Identifying the features of structural and phase transformations in processing the waste of metallurgical products doped with refractory elements
DOI:
https://doi.org/10.15587/1729-4061.2020.214826Keywords:
oxide technogenic waste, scale of alloy steels, reduction smelting, X-ray phase studiesAbstract
Phase composition and microstructure of the doping alloy obtained by regenerative smelting of technogenic wastes were studied. This is necessary to determine technological characteristics that increase the degree of extraction of doping elements during the processing of technogenic raw materials and subsequent use of the alloying material. It was determined that at a Si:C atomic ratio in the charge at a level of 0.05–0.19 (O:C atomic ratio is 1.25), a solid solution of carbon and doping elements in γ-Fe, Fe3Si, and Fe5Si3 was found in the alloy. At Si:C atomic ratio at a level of 0.05 in the alloy, a solid solution of carbon and alloying elements in γ-Fe was dominating with a weak manifestation of Fe3Si. When the value of Si:C atomic ratio was increased to 0.09, Fe5Si3 was found together with Fe3Si. A gradual increase in Si:C atomic ratio to 0.09, 0.12, and 0.19 led to a higher manifestation of Fe3Si and Fe5Si3. The microstructure of the alloy in the entire studied range of Si:C ratio values in the charge was characterized by the presence of several phases with different contents of doping elements. The content of elements in the studied areas (at. %) was 1.65–52.10 for Ni, 2.80–53.92 for Cr, 0.19–13.48 for Mo, 0.40–12.21 for W, 13.85–33.85 for Nb, 2.40–6.63 for Ti. An increase in Si:C atomic ratio in the charge from 0.05 to 0.19 caused an increase in silicon concentration in the studied areas of the microstructure (from 0.28 at. %) to 6.31 at. %. According to an analysis of the sample areas, carbon content was characterized by figures from 2.07 at. % to 14.23 at. %). Some of the investigated particles with a high content of W, Mo, Nb corresponded to complex carbide compounds with a high probability. Based on the study results, it can be pointed out that the most favorable Si C atomic ratio in the charge is 0.12 (with an O:C atomic ratio of 1.25). The resulting product had a relatively low content of silicon and carbon but was sufficient enough to provide the required reducing and deoxidizing strength of the alloyReferences
- Maksimov, E. A., Vasil’ev, V. I. (2016). The Utilization of the Wastes of the Rolling and Pipe-Rolling Shops of the Metallurgical Plants and their Processing. Ferrous Metallurgy. Bulletin of Scientific, Technical and Economic Information, 3, 99–106.
- Grigor’ev, S. M., Petrishchev, A. S. (2012). Assessing the phase and structural features of the scale on P6M5Φ3 and P12M3K5Φ2 steel. Steel in Translation, 42 (3), 272–275. doi: https://doi.org/10.3103/s0967091212030059
- Demydyk, V. N. (2014). Sustainable development and waste recycling in ferrous metallurgy. Metall i lit'e Ukrainy, 8 (255), 36–40.
- Mechachti, S, Benchiheub, O., Serrai, S., Shalabi, M. (2013). Preparation of iron Powders by Reduction of Rolling Mill Scale. International Journal of Scientific & Engineering Research, 4, 5, 1467–1472.
- Petryshchev, A., Milko, D., Borysov, V., Tsymbal, B., Hevko, I., Borysova, S., Semenchuk, A. (2019). Studying the physicalchemical transformations at resourcesaving reduction melting of chrome-nickelcontaining metallurgical waste. Eastern-European Journal of Enterprise Technologies, 2 (12 (98)), 59–64. doi: https://doi.org/10.15587/1729-4061.2019.160755
- Petryshchev, A., Braginec, N., Borysov, V., Bratishko, V., Torubara, O., Tsymbal, B. et. al. (2019). Study into the structuralphase transformations accompanying the resourcesaving technology of metallurgical waste processing. Eastern-European Journal of Enterprise Technologies, 4 (12 (100)), 37–42. doi: https://doi.org/10.15587/1729-4061.2019.175914
- Zhao, L., Wang, L., Chen, D., Zhao, H., Liu, Y., Qi, T. (2015). Behaviors of vanadium and chromium in coal-based direct reduction of high-chromium vanadium-bearing titanomagnetite concentrates followed by magnetic separation. Transactions of Nonferrous Metals Society of China, 25 (4), 1325–1333. doi: https://doi.org/10.1016/s1003-6326(15)63731-1
- Ryabchikov, I. V., Belov, B. F., Mizin, V. G. (2014). Reactions of metal oxides with carbon. Steel in Translation, 44 (5), 368–373. doi: https://doi.org/10.3103/s0967091214050118
- Zhang, Y., Wei, W., Yang, X., Wei, F. (2013). Reduction of Fe and Ni in Fe-Ni-O systems. Journal of Mining and Metallurgy, Section B: Metallurgy, 49 (1), 13–20. doi: https://doi.org/10.2298/jmmb120208038z
- Zhu, H., Li, Z., Yang, H., Luo, L. (2013). Carbothermic Reduction of MoO3 for Direct Alloying Process. Journal of Iron and Steel Research International, 20 (10), 51–56. doi: https://doi.org/10.1016/s1006-706x(13)60176-4
- Shveikin, G. P., Kedin, N. A. (2014). Products of carbothermal reduction of tungsten oxides in argon flow. Russian Journal of Inorganic Chemistry, 59 (3), 153–158. doi: https://doi.org/10.1134/s0036023614030206
- Smirnyagina, N. N., Khaltanova, V. M., Kim, T. B., Milonov, A. S. (2012). Thermodynamic modeling of the formation of borides and carbides of tungsten, synthesis, structure and phase composition of the coatings based on them, formed by electron-beam treatment in vacuum. Izvestiya vysshih uchebnyh zavedeniy. Fizika, 55 (12 (3)), 159–163.
- Borysov, V., Lytvynov, A., Braginets, N., Petryshchev, A., Artemev, S., Tsymbal, B. et. al. (2020). Features of the phase and structural transformations in the processing of industrial waste from the production of highalloyed steels. Eastern-European Journal of Enterprise Technologies, 3 (10 (105)), 48–54. doi: https://doi.org/10.15587/1729-4061.2020.205779
- Ackerbauer, S., Krendelsberger, N., Weitzer, F., Hiebl, K., Schuster, J. C. (2009). The constitution of the ternary system Fe–Ni–Si. Intermetallics, 17 (6), 414–420. doi: https://doi.org/10.1016/j.intermet.2008.11.016
- Azimi, G., Shamanian, M. (2010). Effects of silicon content on the microstructure and corrosion behavior of Fe–Cr–C hardfacing alloys. Journal of Alloys and Compounds, 505 (2), 598–603. doi: https://doi.org/10.1016/j.jallcom.2010.06.084
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Vadym Volokh, Endar Kim, Tetiana Fesenko, Artem Petryshchev, Sergey Artemev, Bohdan Tsymbal, Lesia Makarenko, Andrii Hedzyk, Volodymyr Slabko, Vasyl Khmelovskyi
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.