The kinetics of the processes of extracting the Cu(II) and Fe(III) ions from aqueous solutions by the biosorbents based on pea processing waste

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.215043

Keywords:

aqueous solutions, heavy metals, plant waste, biosorbents, kinetics, adsorption isotherms

Abstract

Effective purification of natural and wastewater from heavy metals is a relevant environmental and national-economic problem. It can be solved by using plant-waste-derived biosorbents in water treatment technologies. They are formed in large quantities by agricultural and food enterprises. Taking into consideration data on the peculiarities of mechanical and thermal effects on the components of plant biomass, the techniques have been substantiated to obtain biosorbents from pea processing waste. It has been shown that the dehydration of the waste, its carbonization, and the crushing of char can produce biosorbents with different sorption properties. The nature of influence exerted by the process parameters of the Cu(II) and Fe(III) ions biosorption from model aqueous solutions on a change in the concentration of the solution, the value, and adsorption uptake has been established. In particular, the effect of the process duration, the type and initial content of metal in the solution, dosage, and a biosorbent production technique was studied. It has been shown that 38 to 98 % of heavy metals can be removed from solutions at their initial concentration between 2 and 20 mg/dm3 and a biosorbent dosage between 1 and 30 g/dm3. It was found that char is more efficient at removing heavy metals. It was also determined that the biosorbents made from pea processing waste are better at removing the Cu(II) ions from aqueous solutions than the Fe(III) ions. The generalization of the results of kinetic research is represented in the form of a multifactor regression equation. The equation makes it possible to calculate a change in the concentration of heavy metal in the solution depending on its initial concentration, the duration of the biosorption process, and the dosage of a biosorbent. For the mathematical notation of the experimental adsorption isotherms, values of the coefficients in a Langmuir equation have been determined. The derived equations could make it possible to optimize the technological parameters of the process

Author Biographies

Оlena Kovalenko, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Doctor of Technical Sciences, Professor

Department of Bioengineering and Water

Viktoriia Novoseltseva, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Postgraduate Student

Department of Bioengineering and Water

Oleh Vasyliv, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

PhD, Associate Professor

Department of Oil and Gas Technologies, Engineering and Heat Power Engineering

Olena Liapina, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

PhD, Associate Professor

Department of Bioengineering and Water

Olga Beregova, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

PhD, Associate Professor

Department of Bioengineering and Water

References

  1. Masindi, V., Muedi, K. L. (2018). Environmental Contamination. Heavy Metals. doi: http://doi.org/10.5772/intechopen.76082
  2. Science for Environment Policy (2017) Tackling mercury pollution in the EU and worldwide. In-depth Report 15 produced for the European Commission, DG Environment by the Science Communication Unit. Bristol: UWE. Available at: https://ec.europa.eu/environment/integration/research/newsalert/pdf/tackling_mercury_pollution_EU_and_worldwide_IR15_en.pdf
  3. Abdel-Raouf, M. S., Abdul-Raheim, A. R. M. (2016). Removal of Heavy Metals from Industrial Waste Water by Biomass-Based Materials: A Review. Journal of Pollution Effects & Control, 5 (1). doi: http://doi.org/10.4172/2375-4397.1000180
  4. Musilova, J., Arvay, J., Vollmannova, A., Toth, T., Tomas, J. (2016). Environmental Contamination by Heavy Metals in Region with Previous Mining Activity. Bulletin of Environmental Contamination and Toxicology, 97 (4), 569–575. doi: http://doi.org/10.1007/s00128-016-1907-3
  5. Vasyliuk, T. P. (2013). Akumuliatsiia ta rozpodil vazhkykh metaliv u fitomasi hidrobiontiv vydu Eichhornia Crassipes (Mart.) Solms pry bioochyshchenni silskohospodarskykh stichnykh vod. Visnyk NUVHP, 1 (61), 67–73.
  6. Nwosu, U. L., Ajiwe, V. I. E., Okoye, P. A. C. (2014). Assessment of Heavy Metal Pollution of Effluents from three (3) Food Industries in Nnewi/Ogidi areas of Anambra State, Nigeria. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8 (11), 13–21. doi: http://doi.org/10.9790/2402-081131321
  7. Kanamarlapudi, S. L. R. K., Chintalpudi, V. K., Muddada, S. (2018). Application of Biosorption for Removal of Heavy Metals from Wastewater. Biosorption. doi: http://doi.org/10.5772/intechopen.77315
  8. Mussatto, S. I. (Ed.) (2016). Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery. Elsevier, 647. doi: http://doi.org/10.1016/c2014-0-01890-4
  9. Iamansarova, E. T., Khasanova, D. N., Abdullin, M. I., Gromyko, N. V. (2016). Ekonomicheskie aspekty primeneniia sorbentov na osnove selskokhoziaistvennykh otkhodov dlia ochistki prirodnykh vod ot nefti i produktov na ee osnove. Nauchnii zhurnal NIU ITMO, 1, 118–122.
  10. Jamshaid, A., Hamid, A., Muhammad, N., Naseer, A., Ghauri, M., Iqbal, J. et. al. (2017). Cellulose-based Materials for the Removal of Heavy Metals from Wastewater – An Overview. ChemBioEng Reviews, 4 (4), 240–256. doi: http://doi.org/10.1002/cben.201700002
  11. Angin, D. (2014). Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions. Bioresource Technology, 168, 259–266. doi: http://doi.org/10.1016/j.biortech.2014.02.100
  12. Yavari, S., Malakahmad, A., Sapari, N. B., Yavari, S. (2017). Synthesis optimization of oil palm empty fruit bunch and rice husk biochars for removal of imazapic and imazapyr herbicides. Journal of Environmental Management, 193, 201–210. doi: http://doi.org/10.1016/j.jenvman.2017.02.035
  13. Kovalenko, E. A., Kurchevich, I. V., Vasyliv, O. B. (2012). Eksperimentalnye issledovaniia vliianiia uslovii vymorazhivaniia na kachestvo opresnennoi vody. Opyt i molodost v reshenii vodnykh problem. Saint Petersburg, 2, 126–134.
  14. Adilla Rashidi, N., Yusup, S. (2020). A Mini Review of Biochar Synthesis, Characterization, and Related Standardization and Legislation. Applications of Biochar for Environmental Safety. doi: http://doi.org/10.5772/intechopen.92621
  15. Garg, M. (2015). Nutritional Evaluation and Utilization of Pea Pod Powder for Preparation of Jaggery Biscuits. Journal of Food Processing & Technology, 6 (12). doi: http://doi.org/10.4172/2157-7110.1000522
  16. Pfaltzgraff, L. A., De bruyn Mario, Cooper, E. C., Budarin, V., Clark, J. H. (2013). Food waste biomass: a resource for high-value chemicals. Green Chemistry, 15 (2), 307–314. doi: http://doi.org/10.1039/c2gc36978h
  17. Rehman, A., Gulfraz, M., Raja, G. K., Inam Ul Haq, M., Anwar, Z. (2015). A Comprehensive Approach to Utilize an Agricultural Pea peel (Pisum sativum) Waste as a Potential Source for Bio-ethanol Production. Romanian Biotechnological Letters, 20 (3), 10422–10430.
  18. Swain, S. K., Patel, S. B., Panda, A. P., Patnaik, T., Dey, R. K. (2018). Pea (Pisum sativum L.) peel waste carbon loaded with zirconium: study of kinetics, thermodynamics and mechanism of fluoride adsorption. Separation Science and Technology, 54 (14), 2194–2211. doi: http://doi.org/10.1080/01496395.2018.1543320
  19. Pathak, P. D., Mandavgane, S. A., Kulkarni, B. D. (2016). Characterizing Fruit and Vegetable Peels as Bioadsorbents. Current Science, 110 (11), 2114. doi: http://doi.org/10.18520/cs/v110/i11/2114-2123
  20. Haq, A. ul, Saeed, M., Anjum, S., Bokhari, T. H., Usman, M., Tubbsum, S. (2017). Evaluation of Sorption Mechanism of Pb (II) and Ni (II) onto Pea (Pisum sativum) Peels. Journal of Oleo Science, 66 (7), 735–743. doi: http://doi.org/10.5650/jos.ess17020
  21. Dod, R., Banerjee, G., Saini, S. (2012). Adsorption of methylene blue using green pea peels (Pisum sativum): A cost-effective option for dye-based wastewater treatment. Biotechnology and Bioprocess Engineering, 17 (4), 862–874. doi: http://doi.org/10.1007/s12257-011-0614-5
  22. Novoseltseva, V., Yankovych, H., Kovalenko, O., Václavíková, M., Melnyk, I. (2020). Production of high-performance lead(II) ions adsorbents from pea peels waste as a sustainable resource. Waste Management & Research. doi: http://doi.org/10.1177/0734242x20943272
  23. Yankovych, H., Novoseltseva, V., Kovalenko, O., Melnyk, I., Václavíková, M.; Petkov, P., Achour, M., Popov, C. (Eds.) (2020). Determination of Surface Groups of Activated Carbons from Different Sources and Their Application for Heavy Metals Treatment. Nanoscience and Nanotechnology in Security and Protection against CBRN Threats. NATO Science for Peace and Security Series B: Physics and Biophysics. Dordrecht: Springer, 34, 431–436. doi: http://doi.org/10.1007/978-94-024-2018-0_34
  24. ISO 24512:2007: Activities relating to drinking water and wastewater services – Guidelines for the management of drinking water utilities and for the assessment of drinking water services. Available at: https://www.iso.org/standard/37248.html
  25. ISO 17294-2:2016 Water quality – Application of inductively coupled plasma mass spectrometry (ICP-MS) – Part 2: Determination of selected elements including uranium isotopes).Available at: https://www.iso.org/standard/62962.html
  26. pH–metr pH–150MI Rukovodstvo po ekspluatatsii GRBA.414318.001RE. Obschestvo s ogranichennoi otvetstvennostiu «Izmeritelnaia tekhnika». Available at: https://www.izmteh.ru/upload/Instr(Pribor)/pH-150%D0%9C%D0%98_re.pdf
  27. Sheveleva, I. V., Kholomeidik, A. N., Voit, A. V., Zemnukhova, L. A. (2009). Sorbenty na osnove risovoi shelukhi dlia udaleniia ionov Fe (III), Cu (II), Cd (II), Pb (II) iz rastvorov. Khimiia rastitelnogo syria, 4, 171–176.

Downloads

Published

2020-10-31

How to Cite

Kovalenko О., Novoseltseva, V., Vasyliv, O., Liapina, O., & Beregova, O. (2020). The kinetics of the processes of extracting the Cu(II) and Fe(III) ions from aqueous solutions by the biosorbents based on pea processing waste. Eastern-European Journal of Enterprise Technologies, 5(10 (107), 14–25. https://doi.org/10.15587/1729-4061.2020.215043