Development of technology of utilization of products of ferritization processing of galvanic waste in the composition of alkaline cements

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.215129

Keywords:

galvanic waste, ferritization, alkaline cements, heavy metals, sludge, leaching, electromagnetic pulses

Abstract

A study of the products of ferritization processing of galvanic waste: sludge and spent process solutions is carried out. As a result of experiments on dynamic leaching of heavy metal ions, the immobilization properties of the sludge, obtained at different process parameters of ferritization are determined. It is shown that the level of immobilization of heavy metals in ferrite sludge after leaching is 99.96 wt % and in the sludge of traditional wastewater neutralization <97.83 wt %. The studies determine the possibility of reliable utilization of ferritized galvanic waste – introduction into the charge to produce alkaline cements. It is found that the main crystalline phases in the structure of alkaline cements with ferrite sludge are calcite, quartz and heavy metal ferrites. In addition, jelly-like formations are found, which are further capable of crystallization. Such formations reliably bind heavy metals in the chemical structure of cement. It is found that when using up to 10 wt % of ferrite sludge in the total weight of cement, the compressive strength of artificial stone reaches 40 MPa, which meets the requirements of the current standard. The chemical stability of the alkali cement matrix using ferrite sludge is confirmed by the study of leaching of heavy metals for one day in neutral, alkaline and acidic media. It is shown that the degree of immobilization of heavy metal ions in cement with a ferrite sludge content of 30 wt % is >99.98 %. In addition, the concentrations of heavy metal ions during leaching meet the national and international standards for their MPC in drinking water and soil. This approach will allow solving the problem of utilization of hazardous galvanic waste and production of general construction materials

Author Biographies

Gennadii Kochetov, Kyiv National University of Construction and Architecture Povitroflotskyi ave., 31, Kyiv, Ukraine, 03037

Doctor of Technical Sciences, Professor

Department of Chemistry

Oleksandr Kovalchuk, Kyiv National University of Construction and Architecture Povitroflotskyi ave., 31, Kyiv, Ukraine, 03037

PhD, Senior Researcher

V. D. Glukhovskii Scientific Research Institute for Binders and Materials

Dmitry Samchenko, Kyiv National University of Construction and Architecture Povitroflotskyi ave., 31, Kyiv, Ukraine, 03037

PhD, Senior Researcher

Scientific Research Part

References

  1. Boshnyak, M. V., Galimianov, A. R., Kolmachikhina, O. B. (2018). Evaluation of the Processing Opportunity of Galvanic Production Sludges with Nickel Recovery. Solid State Phenomena, 284, 790–794. doi: http://doi.org/10.4028/www.scientific.net/ssp.284.790
  2. Pashayan, А. А., Karmanov, D. А. (2018). Recycling of Electroplating Wastes without Formation of Galvanic Sludges. Ecology and Industry of Russia, 22 (12), 19–21. doi: http://doi.org/10.18412/1816-0395-2018-12-19-21
  3. De Oliveira, C. L. M., de Paula Filho, F. J., Moura, J. V. B., Freitas, D. M. G., Santiago, M. O. (2018). Characterization of Galvanic Sludges Waste Derived of the Metal Plating Industry from Cariri Region, Northeastern of Brazil. Materials Science Forum, 930, 541–545. doi: http://doi.org/10.4028/www.scientific.net/msf.930.541
  4. Zlebek, T., Hodul, J., Drochytka, R. (2018). Repairing composite using hazardous waste containing heavy metals. IOP Conference Series: Materials Science and Engineering, 385, 012068. doi: http://doi.org/10.1088/1757-899x/385/1/012068
  5. Król, A. (2018). Effect of high temperature on immobilization of heavy metals in concrete with an addition of galvanic sludge. WIT Transactions on Ecology and the Environment, 109, 331‒339. doi: http://doi.org/10.2495/wm080351
  6. González-Corrochano, B., Alonso-Azcárate, J., Rodríguez, L., Lorenzo, A. P., Torío, M. F., Ramos, J. J. T. et. al. (2016). Valorization of washing aggregate sludge and sewage sludge for lightweight aggregates production. Construction and Building Materials, 116, 252–262. doi: http://doi.org/10.1016/j.conbuildmat.2016.04.095
  7. Bednarik, V., Vondruska, M., Koutny, M. (2005). Stabilization/solidification of galvanic sludges by asphalt emulsions. Journal of Hazardous Materials, 122 (1-2), 139–145. doi: http://doi.org/10.1016/j.jhazmat.2005.03.021
  8. Kovalchuk, O., Grabovchak, V., Govdun, Y. (2018). Alkali activated cements mix design for concretes application in high corrosive conditions. MATEC Web of Conferences, 230, 03007. doi: http://doi.org/10.1051/matecconf/201823003007
  9. Castañeda Bocanegra, J. J., Espejo Mora, E., Cubillos González, G. I. (2017). Encapsulation in ceramic material of the metals Cr, Ni, and Cu contained in galvanic sludge via the solidification/stabilization method. Journal of Environmental Chemical Engineering, 5 (4), 3834–3843. doi: http://doi.org/10.1016/j.jece.2017.07.044
  10. Ol’shanskaya, L. N., Lazareva, E. N., Bulkina, L. A. (2016). Recycling of Heavy Metals and Their Compounds from Galvanic Sludges to Produce Pigments and Fillers and the Active Species of Nickel–Iron (Cadmium) Battery Cathodes. Chemical and Petroleum Engineering, 52 (1-2), 138–142. doi: http://doi.org/10.1007/s10556-016-0163-z
  11. Vilarinho, C., Teixeira, J., Araújo, J., Carvalho, J. (2017). Effect of time and acid concentration on metal extraction from galvanic sludges. ASME International Mechanical Engineering Congress and Exposition. Proceedings (IMECE), 14, 71370. doi: http://doi.org/10.1115/imece2017-71370
  12. Huyen, P. T., Dang, T. D., Tung, M. T., Huyen, N. T. T., Green, T. A., Roy, S. (2016). Electrochemical copper recovery from galvanic sludge. Hydrometallurgy, 164, 295–303. doi: http://doi.org/10.1016/j.hydromet.2016.06.028
  13. Makovskaya, O. Y., Kostromin, K. S. (2019). Leaching of Non-Ferrous Metals from Galvanic Sludges. Materials Science Forum, 946, 591–595. doi: http://doi.org/10.4028/www.scientific.net/msf.946.591
  14. Kumar, M., Dosanjh, H. S., Singh, H. (2019). Biopolymer modified transition metal spinel ferrites for removal of fluoride ions from water. Environmental Nanotechnology, Monitoring & Management, 12, 100237. doi: http://doi.org/10.1016/j.enmm.2019.100237
  15. Heuss-Aßbichler, S., John, M., Klapper, D., Bläß, U. W., Kochetov, G. (2016). Recovery of copper as zero-valent phase and/or copper oxide nanoparticles from wastewater by ferritization. Journal of Environmental Management, 181, 1–7. doi: http://doi.org/10.1016/j.jenvman.2016.05.053
  16. Kochetov, G., Prikhna, T., Kovalchuk, O., Samchenko, D. (2018). Research of the treatment of depleted nickel­plating electrolytes by the ferritization method. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 52–60. doi: http://doi.org/10.15587/1729-4061.2018.133797
  17. Birčáková, Z., Füzer, J., Kollár, P., Streckova, M., Szabó, J., Bureš, R., Fáberová, M. (2019). Magnetic properties of Fe-based soft magnetic composite with insulation coating by resin bonded Ni-Zn ferrite nanofibres. Journal of Magnetism and Magnetic Materials, 485, 1–7. doi: http://doi.org/10.1016/j.jmmm.2019.04.060
  18. Marciniak, K., Grabowska, K., Stempień, Z., Ciesielska-Wróbel, I., Ciesielska-Wróbel, I., Rutkowska, A., Taranek, D. (2016). Woven Fabrics Containing Hybrid Yarns for Shielding Electromagnetic Radiation. Fibres and Textiles in Eastern Europe, 24 (6 (120)), 109–115. doi: http://doi.org/10.5604/12303666.1221744
  19. Antipov, V. B., Potekaev, A. I., Vorozhtsov, A. B., Melentyev, S. V., Tsyganok, Y. I. (2016). Radio-Absorbing Nanocoatings on Corrugated Surfaces. Russian Physics Journal, 59 (8), 1225–1230. doi: http://doi.org/10.1007/s11182-016-0895-4
  20. Kryvenko, P., Guzii, S., Kovalchuk, O., Kyrychok, V. (2016). Sulfate Resistance of Alkali Activated Cements. Materials Science Forum, 865, 95–106. doi: http://doi.org/10.4028/www.scientific.net/msf.865.95
  21. Kovalchuk, O., Kochetov, G., Samchenko, D. (2019). Study of service properties of alkali-activated cement using wastewater treatment residues. IOP Conference Series: Materials Science and Engineering, 708, 012087. doi: http://doi.org/10.1088/1757-899x/708/1/012087
  22. Kovalchuk, O., Kochetov, G., Samchenko, D., Kolodko, A. (2019). Development of a technology for utilizing the electroplating wastes by applying a ferritization method to the alkaline­activated materials. Eastern-European Journal of Enterprise Technologies, 2 (10 (98)), 27–34. doi: http://doi.org/10.15587/1729-4061.2019.160959
  23. Kochetov, G., Prikhna, T., Samchenko, D., Kovalchuk, O. (2019). Development of ferritization processing of galvanic waste involving the energy­saving electromagnetic pulse activation of the process. Eastern-European Journal of Enterprise Technologies, 6 (10 (102)), 6–14. doi: http://doi.org/10.15587/1729-4061.2019.184179
  24. Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: http://doi.org/10.1007/s10008-016-3405-2
  25. Krivenko, P., Petropavlovskyi, O., Kovalchuk, O., Rudenko, I., Konstantynovskyi, O. (2020). Enhancement of alkali-activated slag cement concretes crack resistance for mitigation of steel reinforcement corrosion. E3S Web of Conferences, 166, 06001. doi: http://doi.org/10.1051/e3sconf/202016606001

Downloads

Published

2020-10-31

How to Cite

Kochetov, G., Kovalchuk, O., & Samchenko, D. (2020). Development of technology of utilization of products of ferritization processing of galvanic waste in the composition of alkaline cements. Eastern-European Journal of Enterprise Technologies, 5(10 (107), 6–13. https://doi.org/10.15587/1729-4061.2020.215129