Determining the deformed state in the process of rolling conical shells with a flange

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.216523

Keywords:

forging, rolling, taper, conical shell, ring, hollow forging, step striker

Abstract

Obtaining conical shells by forging is an important and relevant task in energy and heavy engineering. Existing processes of their manufacture come down to simplifying the configuration of such billets. The result is the increased material’s consumption while the internal fiber is cut during machining, which also leads to a decrease in mechanical properties. A new forging technique necessitated a study into the shape change of the billet and the distribution of deformations in the process of rolling. A finite-element method was used to investigate the process of rolling out the step hollow billets. Based on the study results, the forging’s taper was established, obtained during the forging process. A research procedure involving the finite-element method was devised to study the operation of conical shells’ rolling, which made it possible to determine a change in the shape and size of a hollow forging when rolled out by a step tool. A parameter has been proposed to quantify the formation of taper in the process of rolling a billet with a flange. Based on the study results, a step-wise distribution of the intensity of logarithmic deformities in the body of a forging was established when conical shells were rolled out. It was found that the step deformation leads to an increase in the uneven distribution of deformations on the part of the protrusion and ledge. Maximum deformations of 1.0...1.2 occur at the inner and outer surfaces of the step billet’s protrusion. Dependences of the shape change in a step billet for the investigated ratios of sizes and rolling modes have been established. It was found that the maximum taper is obtained at a deformation degree of 15 %. It was determined that the degree of compression in the ledge and protrusion is leveled after 3 deformation runs of the step billet

Author Biographies

Oleg Markov, Donbass State Engineering Academy Akademichna str., 72, Kramatorsk, Ukraine, 84313

Doctor of Technical Sciences, Professor, Head of Department

Department of Computerized Design and Modeling Processes and Machines

Volodymyr Panov, PJSC Energomashspetsstal Oleksy Tykhoho str., 1, Kramatorsk, Ukraine, 84306

Head of Forging Shop

Sergii Karnaukh, Donbass State Engineering Academy Akademichna str., 72, Kramatorsk, Ukraine, 84313

PhD, Associate Professor, Head of Department

Department of Basics of Designing a Machine

Anton Khvashchynskyi, PJSC Energomashspetsstal Oleksy Tykhoho str., 1, Kramatorsk, Ukraine, 84306

Deputy Head of Forging Shop

Roman Zhytnikov, Donbass State Engineering Academy Akademichna str., 72, Kramatorsk, Ukraine, 84313

Postgraduate Student

Department of Computerized Design and Modeling Processes and Machines

Volodymyr Kukhar, Pryazovskyi State Technical University Universytetska str., 7, Mariupol, Ukraine, 87555

Doctor of Technical Sciences, Professor, Head of Department

Department of Metal Forming

Maksym Kosilov, Donetsk Regional State Administration Akademichna str., 75/55, Kramatorsk, Ukraine, 84313

Head Specialist

Department of Economics

Pavlo Rizak, PJSC "Novokramatorsky Mashinostroitelny Zavod" Oleksy Tykhoho str., 1, Kramatorsk, Ukraine, 84305

Head Master

References

  1. Markov, O., Gerasimenko, O., Aliieva, L., Shapoval, A., Kosilov, M. (2019). Development of a new process for expanding stepped tapered rings. Eastern-European Journal of Enterprise Technologies, 2 (1 (98)), 39–46. doi: https://doi.org/10.15587/1729-4061.2019.160395
  2. Markov, O. E. (2012). Forging of large pieces by tapered faces. Steel in Translation, 42 (12), 808–810. doi: https://doi.org/10.3103/s0967091212120054
  3. Markov, O. E., Perig, A. V., Zlygoriev, V. N., Markova, M. A., Kosilov, M. S. (2017). Development of forging processes using intermediate workpiece profiling before drawing: research into strained state. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39 (11), 4649–4665. doi: https://doi.org/10.1007/s40430-017-0812-y
  4. Markov, O. E., Gerasimenko, O. V., Shapoval, A. A., Abdulov, O. R., Zhytnikov, R. U. (2019). Computerized simulation of shortened ingots with a controlled crystallization for manufacturing of high-quality forgings. The International Journal of Advanced Manufacturing Technology, 103 (5-8), 3057–3065. doi: https://doi.org/10.1007/s00170-019-03749-4
  5. Markov, O. E., Gerasimenko, O. V., Kukhar, V. V., Abdulov, O. R., Ragulina, N. V. (2019). Computational and experimental modeling of new forging ingots with a directional solidification: the relative heights of 1.1. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41 (8). doi: https://doi.org/10.1007/s40430-019-1810-z
  6. Sang-Hun, O., Jung, N., Seog-Ou, Ch., Dong-Hee, L. (2011). A Study on the Fabrication of a Large Hollow Ingot by CAE. In 18th International Forgemasters Meeting, Market and Technical Proceedings. Pittsburgh, 179–182.
  7. Girardin, G., Jobard, D., Perdriset, F., Tollini, P., Poitrault, I., Gingell, A. (2011). Hollow Ingot: Thirty Years of Use to Control Segregation and Quality for Nuclear and Petrochemical Large Shells. In 18th International Forgemasters Meeting, Market and Technical Proceedings. Pittsburgh, 170–174.
  8. Skripnik, S. V., Chernega, D. F. (2009). Progressivnaya tehnologiya izgotovleniya polyh elektroshlakovyh zagotovok dlya raskatnyh kolets i obechaek. Protsessy lit'ya, 5, 57–61.
  9. Dub, A. V., Levkov, L. Ya., Shurygin, D. A., Kriger, Yu. N., Markov, S. I., Orlov, S. V. et. al. (2014). Prospects for production of NPP equipment using electroslag refining. Voprosy atomnoy nauki i tehniki. Seriya: obespechenie bezopasnosti AES, 34, 11–18.
  10. Doub, A. V., Doub, V. S., Kriger, Y. N., Levkov, L. Ya., Orlov, S. V., Shurygin, D. A. et. al. (2012). Electroslag remelting as the method of radically quality and properties improving of the superduty products for modem engineering. Technical requirements and new solutions. Tyazheloe mashinostroenie, 6, 2–6.
  11. Kal'chenko, P. P., Bykov, V. P., Tsvyashchenko, N. A., Burmistrov, V. G., Babaskin, A. A., Shishmarev, A. I., Pimenov, G. A. (1978). A. s. No. 712185 SSSR. Ustroystvo dlya raskatki polyh izdeliy na presse. No. 2636655/25-27; declareted: 07.03.1978; published: 30.01.1980, Bul. No. 4.
  12. Stankov, Yu. M., Kalchenko, P. P., Kyrpychenko, A. V., Oleshko, V. M. (2001). Pat. No. 47648 UA. Sposib vyhotovlennia velykohabarytnykh bandazhiv. No. 2001064464; declareted: 26.06.2001; published: 15.07.2002, Bul. No. 7.
  13. Aref'ev, V. D., Pakalo, A. V., Petunin, Yu. A. (1981). A. s. No. 1006033 A SSSR. Ustroystvo dlya raskatki kol'tsevyh pokovok. No. 3369803/25-27; declareted: 31.12.1981; published: 23.03.1983, Bul. No. 11.
  14. Shlyakman, B. M., Belova, L. P., Utkin, A. A. (2001). Pat. No. 2207213 RF. Sostavnaya opravka dlya raskatki kolets. No. 2001110190/02; declareted: 13.04.2001; published: 20.06.2003, Bul. No. 18.
  15. Suzuki, K., Sato, I., Tsukada, H. (1994). Manufacturing and material properties of ultralarge size forgings for advanced BWRPV. Nuclear Engineering and Design, 151 (2-3), 513–522. doi: https://doi.org/10.1016/0029-5493(94)90192-9
  16. Ingersoll, D. T. (2015). Small modular reactors (SMRs) for producing nuclear energy: international developments. Handbook of Small Modular Nuclear Reactors, 27–60. doi: https://doi.org/10.1533/9780857098535.1.27
  17. Kowalski, J., Hoderny, B., Malinowski, Z. (1987). Experimental investigation of the strain state in the ring-forging process. Journal of Mechanical Working Technology, 14 (3), 309–324. doi: https://doi.org/10.1016/0378-3804(87)90016-7
  18. Temkin, B. O., Raginskiy, E. L., Kasatonov, V. F., Petrov, V. A., Kotelkin, A. V. (1977). A. s. No. 685407 SSSR. Sposob raskatki kolets i opravka dlya ego osushchestvleniya. No. 2471187/25-27; declareted: 11.04.1977; published: 15.09.1979, Bul. No. 34.
  19. Temkin, B. O., Kasatonov, V. F., Petrov, V. A. et. al. (1983). Kovka kol'tsevyh pokovok s ispol'zovaniem volnistoy opravki. Kuznechno-shtampovochnoe proizvodstvo, 9, 15–16.
  20. Solontsov, S. S., Al'shits, M. Ya. (1970). Formoizmenenie kol'tsevyh zagotovok pri goryachey raskatke pokovok s tavrovym profilem poperechnogo secheniya. Kuznechno-shtampovochnoe proizvodstvo, 2, 1–4.
  21. Rao, M. N. (2011). Materials Development for Indian Nuclear Power Programme: an Industry Perspective. Energy Procedia, 7, 199–204. doi: https://doi.org/10.1016/j.egypro.2011.06.026
  22. Teploustoychivye radiatsionno-stoykie hromomolibdenovanadievye stali marok 15X2MFA-A mod. A i 15X2MFA-A mod. B. NITS «Kurchatovskiy institut». Available at: http://www.crism-prometey.ru/science/steel/thermostable-radiation-resistant-steel-15H2MFA.aspx
  23. Markov, O. E., Oleshko, M. V., Mishina, V. I. (2011). Development of Energy-saving Technological Process of Shafts Forging Weighing More Than 100 Tons without Ingot Upsetting. Metallurgical and Mining Industry, 3 (7), 87–90. Available at: https://www.metaljournal.com.ua/assets/Uploads/attachments/87Markov.pdf
  24. Markov, O., Gerasimenko, O., Khvashchynskyi, A., Zhytnikov, R., Puzyr, R. (2019). Modeling the techological process of pipe forging without a mandrel. Eastern-European Journal of Enterprise Technologies, 3 (1 (99)), 42–48. doi: https://doi.org/10.15587/1729-4061.2019.167077
  25. Markov, O., Aliiev, I., Aliieva, L., Hrudkina, N. (2020). Computerized and physical modeling of upsetting operation by combined dies. Journal of chemical technology and metallurgy, 55 (3), 640–648. Available at: https://dl.uctm.edu/journal/node/j2020-3/23_19-275_p_640-648.pdf
  26. Markov, O., Kosilov, M., Panov, V., Kukhar, V., Karnaukh, S., Ragulina, N. et. al. (2019). Modeling and improvement of saddling a stepped hollow workpiece with a profiled tool. Eastern-European Journal of Enterprise Technologies, 6 (1 (102)), 19–25. doi: https://doi.org/10.15587/1729-4061.2019.183663
  27. Hrudkina, N., Aliieva, L., Abhari, P., Markov, O., Sukhovirska, L. (2019). Investigating the process of shrinkage depression formation at the combined radial-backward extrusion of parts with a flange. Eastern-European Journal of Enterprise Technologies, 5 (1 (101)), 49–57. doi: https://doi.org/10.15587/1729-4061.2019.179232
  28. Aliieva, L., Hrudkina, N., Aliiev, I., Zhbankov, I., Markov, O. (2020). Effect of the tool geometry on the force mode of the combined radial-direct extrusion with compression. Eastern-European Journal of Enterprise Technologies, 2 (1 (104)), 15–22. doi: https://doi.org/10.15587/1729-4061.2020.198433
  29. Zhbankov, Ya. G., Tagan, L. V., Shkira, A. V. (2011). Kovka konicheskih obechaek. Nauchniy vestnik Donbasskoy gosudarstvennoy mashinostroitel'noy akademii, 2 (8E), 8–14.
  30. Biba, N. V., Gladkov, Yu. A., Belokurov, O. A. (2008). Primenenie programmy modelirovaniya protsessov OMD QFORM dlya obucheniya i issledovatel'skoy raboty v universitetah. Udoskonalennia protsesiv i obladnannia obrobky tyskom v mashynobuduvanni ta metalurhii: tematych. zb. nauk. prats. Kramatorsk: DDMA, 9–14.
  31. Zhenshan, C., Guangsheng, R., Binqye, X. et. al. (2003). Condition of closing voids in solid cylinders during hot forging. Tsinghua Univ. Sci. and Technol., 2, 227–229.
  32. Weides, G., Blaes, N., Bokelmann, D. (2008). Optimisation of the forging process of profiled discs for low pressure turbine rotors by FEM simulation. 17 International forgeмasters meeting. Santander, 212–215.
  33. Bocharov, Yu. A., Balaganskiy, V. I. (2002). Vtoroy Evropeyskiy seminar po modelirovaniyu protsessov v obrabotke davleniem. Kuznechno-shtampovochnoe proizvodstvo, 9, 38–41.
  34. Ivanov, K. M., Shevchenko, V. S., Yurgenson, E. E. (2000). Metod konechnyh elementov v tehnologicheskih zadachah. Sankt-Peterburg: Izd-vo PIMash, 224.
  35. Ovcharenko, V. A., Podliesnyi, S. V., Zinchenko, S. M. (2008). Osnovy metodu kintsevykh elementiv i yoho zastosuvannia v inzhenernykh rozrakhunkakh. Kramatorsk: DDMA, 380.
  36. Segerlind, L. (1979). Primenenie metoda konechnyh elementov. Moscow: Mir, 392.
  37. Zenkevich, O. (1975). Metod konechnyh elementov v tehnike. Moscow: Mir, 541.
  38. Taupek, I. M., Kabulova, E. G., Polozhentsev, K. A., Lisovskiy, A. V., Makarov, A. V. (2015). Obshchee rukovodstvo po rabote s inzhenernym programmnym kompleksom DEFORM. Stariy Oskol: OOO IPK «Kirillitsa», 217.
  39. Chuhleb, V. L., Tumko, A. N., Ashkelyanets, A. V. (2011). Osnovy razrabotki tehnologicheskih protsessov obrabotki davleniem staley i splavov s prognoziruemym urovnem kachestva metalloproduktsii. Vestnik NTU «KhPI», 47, 110–120.

Downloads

Published

2020-12-31

How to Cite

Markov, O., Panov, V., Karnaukh, S., Khvashchynskyi, A., Zhytnikov, R., Kukhar, V., Kosilov, M., & Rizak, P. (2020). Determining the deformed state in the process of rolling conical shells with a flange. Eastern-European Journal of Enterprise Technologies, 6(1 (108), 34–41. https://doi.org/10.15587/1729-4061.2020.216523

Issue

Section

Engineering technological systems