Determining the deformed state in the process of rolling conical shells with a flange
DOI:
https://doi.org/10.15587/1729-4061.2020.216523Keywords:
forging, rolling, taper, conical shell, ring, hollow forging, step strikerAbstract
Obtaining conical shells by forging is an important and relevant task in energy and heavy engineering. Existing processes of their manufacture come down to simplifying the configuration of such billets. The result is the increased material’s consumption while the internal fiber is cut during machining, which also leads to a decrease in mechanical properties. A new forging technique necessitated a study into the shape change of the billet and the distribution of deformations in the process of rolling. A finite-element method was used to investigate the process of rolling out the step hollow billets. Based on the study results, the forging’s taper was established, obtained during the forging process. A research procedure involving the finite-element method was devised to study the operation of conical shells’ rolling, which made it possible to determine a change in the shape and size of a hollow forging when rolled out by a step tool. A parameter has been proposed to quantify the formation of taper in the process of rolling a billet with a flange. Based on the study results, a step-wise distribution of the intensity of logarithmic deformities in the body of a forging was established when conical shells were rolled out. It was found that the step deformation leads to an increase in the uneven distribution of deformations on the part of the protrusion and ledge. Maximum deformations of 1.0...1.2 occur at the inner and outer surfaces of the step billet’s protrusion. Dependences of the shape change in a step billet for the investigated ratios of sizes and rolling modes have been established. It was found that the maximum taper is obtained at a deformation degree of 15 %. It was determined that the degree of compression in the ledge and protrusion is leveled after 3 deformation runs of the step billetReferences
- Markov, O., Gerasimenko, O., Aliieva, L., Shapoval, A., Kosilov, M. (2019). Development of a new process for expanding stepped tapered rings. Eastern-European Journal of Enterprise Technologies, 2 (1 (98)), 39–46. doi: https://doi.org/10.15587/1729-4061.2019.160395
- Markov, O. E. (2012). Forging of large pieces by tapered faces. Steel in Translation, 42 (12), 808–810. doi: https://doi.org/10.3103/s0967091212120054
- Markov, O. E., Perig, A. V., Zlygoriev, V. N., Markova, M. A., Kosilov, M. S. (2017). Development of forging processes using intermediate workpiece profiling before drawing: research into strained state. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39 (11), 4649–4665. doi: https://doi.org/10.1007/s40430-017-0812-y
- Markov, O. E., Gerasimenko, O. V., Shapoval, A. A., Abdulov, O. R., Zhytnikov, R. U. (2019). Computerized simulation of shortened ingots with a controlled crystallization for manufacturing of high-quality forgings. The International Journal of Advanced Manufacturing Technology, 103 (5-8), 3057–3065. doi: https://doi.org/10.1007/s00170-019-03749-4
- Markov, O. E., Gerasimenko, O. V., Kukhar, V. V., Abdulov, O. R., Ragulina, N. V. (2019). Computational and experimental modeling of new forging ingots with a directional solidification: the relative heights of 1.1. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41 (8). doi: https://doi.org/10.1007/s40430-019-1810-z
- Sang-Hun, O., Jung, N., Seog-Ou, Ch., Dong-Hee, L. (2011). A Study on the Fabrication of a Large Hollow Ingot by CAE. In 18th International Forgemasters Meeting, Market and Technical Proceedings. Pittsburgh, 179–182.
- Girardin, G., Jobard, D., Perdriset, F., Tollini, P., Poitrault, I., Gingell, A. (2011). Hollow Ingot: Thirty Years of Use to Control Segregation and Quality for Nuclear and Petrochemical Large Shells. In 18th International Forgemasters Meeting, Market and Technical Proceedings. Pittsburgh, 170–174.
- Skripnik, S. V., Chernega, D. F. (2009). Progressivnaya tehnologiya izgotovleniya polyh elektroshlakovyh zagotovok dlya raskatnyh kolets i obechaek. Protsessy lit'ya, 5, 57–61.
- Dub, A. V., Levkov, L. Ya., Shurygin, D. A., Kriger, Yu. N., Markov, S. I., Orlov, S. V. et. al. (2014). Prospects for production of NPP equipment using electroslag refining. Voprosy atomnoy nauki i tehniki. Seriya: obespechenie bezopasnosti AES, 34, 11–18.
- Doub, A. V., Doub, V. S., Kriger, Y. N., Levkov, L. Ya., Orlov, S. V., Shurygin, D. A. et. al. (2012). Electroslag remelting as the method of radically quality and properties improving of the superduty products for modem engineering. Technical requirements and new solutions. Tyazheloe mashinostroenie, 6, 2–6.
- Kal'chenko, P. P., Bykov, V. P., Tsvyashchenko, N. A., Burmistrov, V. G., Babaskin, A. A., Shishmarev, A. I., Pimenov, G. A. (1978). A. s. No. 712185 SSSR. Ustroystvo dlya raskatki polyh izdeliy na presse. No. 2636655/25-27; declareted: 07.03.1978; published: 30.01.1980, Bul. No. 4.
- Stankov, Yu. M., Kalchenko, P. P., Kyrpychenko, A. V., Oleshko, V. M. (2001). Pat. No. 47648 UA. Sposib vyhotovlennia velykohabarytnykh bandazhiv. No. 2001064464; declareted: 26.06.2001; published: 15.07.2002, Bul. No. 7.
- Aref'ev, V. D., Pakalo, A. V., Petunin, Yu. A. (1981). A. s. No. 1006033 A SSSR. Ustroystvo dlya raskatki kol'tsevyh pokovok. No. 3369803/25-27; declareted: 31.12.1981; published: 23.03.1983, Bul. No. 11.
- Shlyakman, B. M., Belova, L. P., Utkin, A. A. (2001). Pat. No. 2207213 RF. Sostavnaya opravka dlya raskatki kolets. No. 2001110190/02; declareted: 13.04.2001; published: 20.06.2003, Bul. No. 18.
- Suzuki, K., Sato, I., Tsukada, H. (1994). Manufacturing and material properties of ultralarge size forgings for advanced BWRPV. Nuclear Engineering and Design, 151 (2-3), 513–522. doi: https://doi.org/10.1016/0029-5493(94)90192-9
- Ingersoll, D. T. (2015). Small modular reactors (SMRs) for producing nuclear energy: international developments. Handbook of Small Modular Nuclear Reactors, 27–60. doi: https://doi.org/10.1533/9780857098535.1.27
- Kowalski, J., Hoderny, B., Malinowski, Z. (1987). Experimental investigation of the strain state in the ring-forging process. Journal of Mechanical Working Technology, 14 (3), 309–324. doi: https://doi.org/10.1016/0378-3804(87)90016-7
- Temkin, B. O., Raginskiy, E. L., Kasatonov, V. F., Petrov, V. A., Kotelkin, A. V. (1977). A. s. No. 685407 SSSR. Sposob raskatki kolets i opravka dlya ego osushchestvleniya. No. 2471187/25-27; declareted: 11.04.1977; published: 15.09.1979, Bul. No. 34.
- Temkin, B. O., Kasatonov, V. F., Petrov, V. A. et. al. (1983). Kovka kol'tsevyh pokovok s ispol'zovaniem volnistoy opravki. Kuznechno-shtampovochnoe proizvodstvo, 9, 15–16.
- Solontsov, S. S., Al'shits, M. Ya. (1970). Formoizmenenie kol'tsevyh zagotovok pri goryachey raskatke pokovok s tavrovym profilem poperechnogo secheniya. Kuznechno-shtampovochnoe proizvodstvo, 2, 1–4.
- Rao, M. N. (2011). Materials Development for Indian Nuclear Power Programme: an Industry Perspective. Energy Procedia, 7, 199–204. doi: https://doi.org/10.1016/j.egypro.2011.06.026
- Teploustoychivye radiatsionno-stoykie hromomolibdenovanadievye stali marok 15X2MFA-A mod. A i 15X2MFA-A mod. B. NITS «Kurchatovskiy institut». Available at: http://www.crism-prometey.ru/science/steel/thermostable-radiation-resistant-steel-15H2MFA.aspx
- Markov, O. E., Oleshko, M. V., Mishina, V. I. (2011). Development of Energy-saving Technological Process of Shafts Forging Weighing More Than 100 Tons without Ingot Upsetting. Metallurgical and Mining Industry, 3 (7), 87–90. Available at: https://www.metaljournal.com.ua/assets/Uploads/attachments/87Markov.pdf
- Markov, O., Gerasimenko, O., Khvashchynskyi, A., Zhytnikov, R., Puzyr, R. (2019). Modeling the techological process of pipe forging without a mandrel. Eastern-European Journal of Enterprise Technologies, 3 (1 (99)), 42–48. doi: https://doi.org/10.15587/1729-4061.2019.167077
- Markov, O., Aliiev, I., Aliieva, L., Hrudkina, N. (2020). Computerized and physical modeling of upsetting operation by combined dies. Journal of chemical technology and metallurgy, 55 (3), 640–648. Available at: https://dl.uctm.edu/journal/node/j2020-3/23_19-275_p_640-648.pdf
- Markov, O., Kosilov, M., Panov, V., Kukhar, V., Karnaukh, S., Ragulina, N. et. al. (2019). Modeling and improvement of saddling a stepped hollow workpiece with a profiled tool. Eastern-European Journal of Enterprise Technologies, 6 (1 (102)), 19–25. doi: https://doi.org/10.15587/1729-4061.2019.183663
- Hrudkina, N., Aliieva, L., Abhari, P., Markov, O., Sukhovirska, L. (2019). Investigating the process of shrinkage depression formation at the combined radial-backward extrusion of parts with a flange. Eastern-European Journal of Enterprise Technologies, 5 (1 (101)), 49–57. doi: https://doi.org/10.15587/1729-4061.2019.179232
- Aliieva, L., Hrudkina, N., Aliiev, I., Zhbankov, I., Markov, O. (2020). Effect of the tool geometry on the force mode of the combined radial-direct extrusion with compression. Eastern-European Journal of Enterprise Technologies, 2 (1 (104)), 15–22. doi: https://doi.org/10.15587/1729-4061.2020.198433
- Zhbankov, Ya. G., Tagan, L. V., Shkira, A. V. (2011). Kovka konicheskih obechaek. Nauchniy vestnik Donbasskoy gosudarstvennoy mashinostroitel'noy akademii, 2 (8E), 8–14.
- Biba, N. V., Gladkov, Yu. A., Belokurov, O. A. (2008). Primenenie programmy modelirovaniya protsessov OMD QFORM dlya obucheniya i issledovatel'skoy raboty v universitetah. Udoskonalennia protsesiv i obladnannia obrobky tyskom v mashynobuduvanni ta metalurhii: tematych. zb. nauk. prats. Kramatorsk: DDMA, 9–14.
- Zhenshan, C., Guangsheng, R., Binqye, X. et. al. (2003). Condition of closing voids in solid cylinders during hot forging. Tsinghua Univ. Sci. and Technol., 2, 227–229.
- Weides, G., Blaes, N., Bokelmann, D. (2008). Optimisation of the forging process of profiled discs for low pressure turbine rotors by FEM simulation. 17 International forgeмasters meeting. Santander, 212–215.
- Bocharov, Yu. A., Balaganskiy, V. I. (2002). Vtoroy Evropeyskiy seminar po modelirovaniyu protsessov v obrabotke davleniem. Kuznechno-shtampovochnoe proizvodstvo, 9, 38–41.
- Ivanov, K. M., Shevchenko, V. S., Yurgenson, E. E. (2000). Metod konechnyh elementov v tehnologicheskih zadachah. Sankt-Peterburg: Izd-vo PIMash, 224.
- Ovcharenko, V. A., Podliesnyi, S. V., Zinchenko, S. M. (2008). Osnovy metodu kintsevykh elementiv i yoho zastosuvannia v inzhenernykh rozrakhunkakh. Kramatorsk: DDMA, 380.
- Segerlind, L. (1979). Primenenie metoda konechnyh elementov. Moscow: Mir, 392.
- Zenkevich, O. (1975). Metod konechnyh elementov v tehnike. Moscow: Mir, 541.
- Taupek, I. M., Kabulova, E. G., Polozhentsev, K. A., Lisovskiy, A. V., Makarov, A. V. (2015). Obshchee rukovodstvo po rabote s inzhenernym programmnym kompleksom DEFORM. Stariy Oskol: OOO IPK «Kirillitsa», 217.
- Chuhleb, V. L., Tumko, A. N., Ashkelyanets, A. V. (2011). Osnovy razrabotki tehnologicheskih protsessov obrabotki davleniem staley i splavov s prognoziruemym urovnem kachestva metalloproduktsii. Vestnik NTU «KhPI», 47, 110–120.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Oleg Markov, Volodymyr Panov, Sergii Karnaukh, Anton Khvashchynskyi, Roman Zhytnikov, Volodymyr Kukhar, Maksym Kosilov, Pavlo Rizak
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.