Revealing the patterns of change in the technical condition of refractory elements in thermal units during operation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.216610

Keywords:

refractory element, crack, change in technical condition, probability model, Markov chains

Abstract

Operating conditions of thermal units for processing raw materials predetermine defects in refractory elements resulting in their gradual accumulation, which leads to a change in technical condition. A large number of defects, their development, and the achievement of critical values lead to difficulties in modeling the physical processes of changing the technical condition of refractory elements.

This study has investigated the mechanism of the occurrence, development, and accumulation of defects in refractory elements, as well as the processes of cumulative accumulation of damages; a probability model of their degradation has been constructed. The model was built using Markov chains; it describes the sequences of change in the states of refractory element damage and the probability of transitions between these states. Based on the statistical data about a change in the state of damage, the model makes it possible to assess the probability of a defect reaching the critical condition following the predefined number of load cycles. A special feature of the model is the possibility of its application to individual defects, as well as to refractory elements on which defects occur and develop, as well as to assemblies where such refractory elements are installed.

The main patterns of change in the technical condition of refractory elements of coke ovens have been established: the distribution of cracks of a certain length according to the number of coke oven output cycles; the probability of the occurrence of a crack of a critical length at a certain point during operation; the dependence of the probability of a refractory element failure on the predefined number of coke oven output cycles.

Based on the modeling results, it has been proposed, in order to prevent the degradation of refractory elements, to strengthen the structure of the surface layer of the refractory element by cold gas-dynamic spraying, to arrange laying elements that would stop the evolution of defects, and to make up schedules of hot repairs based on the time when the defects may reach critical values, determined during modeling

Author Biographies

Pavlo Tretiakov, Donetsk National Technical University Shybankova sq., 2, Pokrovsk, Ukraine, 85300

PhD, Associate Professor

Department of Extractive and Processing Complexes Equipment

Andrii Toporov, Donetsk National Technical University Shybankova sq., 2, Pokrovsk, Ukraine, 85300

PhD, Head of Department

Department of Extractive and Processing Complexes Equipment

Olha Aleksieieva, Donetsk National Technical University Shybankova sq., 2, Pokrovsk, Ukraine, 85300

PhD, Associate Professor

Department of Applied Mechanics

Olena Kostina, Donetsk National Technical University Shybankova sq., 2, Pokrovsk, Ukraine, 85300

PhD, Associate Professor

Department of Extractive and Processing Complexes Equipment

Viacheslav Borovlov, Donetsk National Technical University Shybankova sq., 2, Pokrovsk, Ukraine, 85300

Assistant

Department of Extractive and Processing Complexes Equipment

References

  1. Rudyka, V. I., Borodin, M. V. (1999). Problems in reconstruction of basic funds of coke and byproducts industry in Ukraine. Koks i Khimiya, 7, 22–25. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033164922&partnerID=40&md5=2ad13af22003d6ed9f459f6de1998199
  2. Miroshnichenko, I. V., Miroshnichenko, D. V., Shulga, I. V., Balaeva, Y. S., Pereima, V. V. (2019). Calorific Value of Coke. 1. Prediction. Coke and Chemistry, 62 (4), 143–149. doi: https://doi.org/10.3103/s1068364x19040057
  3. Shvetsov, V. I., Sukhorukov, V. I. (2009). Quality of refractories and the durability of coke furnaces. Coke and Chemistry, 52 (2), 60–69. doi: https://doi.org/10.3103/s1068364x09020045
  4. Parfenyuk, A. S., Tret'yakov, P. V., Kostina, E. D. (2004). Destruction of brickwork of coke oven battery. Koks i Khimiya, 8, 14–19. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-12244269101&partnerID=40&md5=933824ac1247c4a6bc62bd5400c85f6e
  5. Zublev, D. G., Novikov, N. A. (2019). Fifth Russian Coking Conference: A Report. Coke and Chemistry, 62 (11), 502–514. doi: https://doi.org/10.3103/s1068364x19110103
  6. Aksel'rod, L. M. et. al.; Kashcheeva, I. D., Grishenkova, E. E. (Eds.) (2002). Ogneupory dlya promyshlennyh agregatov i topok: Spravochnoe izdanie. Kn. 2. Sluzhba ogneuporov. Moscow: Intermet Inzhiniring, 656.
  7. Rudyka, V. I., Zingerman, Yu. E. (Eds.) (2014). Spravochnik koksohimika. Vol. 2. Proizvodstvo koksa. Kharkiv: Izdatel'skiy dom «Inzhek», 728.
  8. Mullinger, P., Jenkins, B. (2013). Furnace Construction and Materials. Industrial and Process Furnaces, 415–455. doi: https://doi.org/10.1016/b978-0-08-099377-5.00011-3
  9. Cameron, I., Sukhram, M., Lefebvre, K., Davenport, W. (2020). Metallurgical Coke - A Key to Blast Furnace Operations. Blast Furnace Ironmaking, 557–572. doi: https://doi.org/10.1016/b978-0-12-814227-1.00055-5
  10. Dvorak, S., Lang, K., Vasica, L. (2015). Development and production of high-density silica for coke ovens. AISTech - Iron and Steel Technology Conference Proceedings, 1, 161–163. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940488603&partnerID=40&md5=5fb417a91a89f646c0ae0b0572e117df
  11. Rudyka, V. I., Zingerman, Y. E., Kamenyuka, V. B., Minasov, A. N., Kononenko, V. S., Volkov, V. I. et. al. (2004). Improvement in design of coke oven battery. Koks i Khimiya, 7, 18–25. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-8644270629&partnerID=40&md5=2a4ddcff353e61733813fa230fb2180a
  12. Ronald, K., Martin, R., Rainer, W. (2009). Process model for heat recovery coke ovens. 5th International Congress on the Science and Technology of Ironmaking, ICSTI 2009, 393–397. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84883617085&partnerID=40&md5=a3322f89f1039ac3f67b6b86bbbea3d0
  13. Guelton, N., Rozhkova, T. V. (2015). Prediction of coke oven wall pressure. Fuel, 139, 692–703. doi: https://doi.org/10.1016/j.fuel.2014.09.042
  14. Zublev, D. G., Barsky, V. D. (2020). Hydraulic Analysis of Coke Ovens. Coke and Chemistry, 63 (4), 172–176. doi: https://doi.org/10.3103/s1068364x20040110
  15. Romas’ko, V. S. (2010). Deformation of coke-furnace heating walls under the action of nonsteady forces and temperatures. Coke and Chemistry, 53 (10), 382–385. doi: https://doi.org/10.3103/s1068364x10100054
  16. Krivoshein, V. T., Grinberg, E. I. (1994). Application of hydraulic devices for the reinforcement of coke ovens lining. Koks i Khimiya, 3, 33–35. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028388057&partnerID=40&md5=becc229875cfdb242a11daa3547152e0
  17. Gataullin, R. G., Bogdanov, V. F. (2018). Modification of Refractory Components in Russian Coke-Oven Linings. Coke and Chemistry, 61 (6), 209–212. doi: https://doi.org/10.3103/s1068364x18060029
  18. Das, S. P., Si, S., Prasad, B., Sahu, J. K., Panda, B. K., Tiwari, J. N., Sahoo, N. (2014). Development of Zero Expansion Silica Bricks for hot Repair of Coke Oven. Proceedings of the Unified International Technical Conference on Refractories (UNITECR 2013), 511–515. doi: https://doi.org/10.1002/9781118837009.ch88
  19. Primachenko, V. V., Pitak, N. V., Martynenko, V. V. (1997). Seventieth anniversary of the Ukrainian Research Institute of Refractories. Refractories and Industrial Ceramics, 38 (9-10), 335–344. doi: https://doi.org/10.1007/bf02767888
  20. Liu, S. X., Shen, L. L., Wang, Q. P. (2011). Properties of Ceramic Coatings on the Wall of Coke Oven. Advanced Materials Research, 189-193, 1105–1108. doi: https://doi.org/10.4028/www.scientific.net/amr.189-193.1105
  21. Pitak, Y. N., Prikhod’ko, Y. E., Gorbatko, S. V., Emchenko, I. V. (2010). Study of the properties of ceramic surfacing material used for restoring coking chamber linings. Refractories and Industrial Ceramics, 51 (2), 114–117. doi: https://doi.org/10.1007/s11148-010-9270-0
  22. Zhang, M., Han, C., Ni, K., Gu, H., Huang, A., Shao, Z. (2017). Improving mullite-silicon carbide refractory in coke dry quenching using aluminum nitride whiskers formed in situ. Ceramics International, 43 (18), 16993–16999. doi: https://doi.org/10.1016/j.ceramint.2017.09.107
  23. Imai, H., Matsuoka, S. (2006). Direct Welding of Metals and Ceramics by Ultrasonic Vibration. JSME International Journal Series A, 49 (3), 444–450. doi: https://doi.org/10.1299/jsmea.49.444
  24. Goffi, E. D., Kerr, P. D., Randolph, R. A. (2008). Strategic coke battery maintenance provides battery life extension. ANNALS - 3rd International Meeting on Ironmaking and 2nd International Symposium on Iron Ore, 1184–1190. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-62549147777&partnerID=40&md5=325658a04310b8b7543062aff95d684b
  25. Zublev, D. G., Barsky, V. D. (2016). Determining the air excess in the heating of coke furnaces. 2. Sampling and analysis. Coke and Chemistry, 59 (11), 414–416. doi: https://doi.org/10.3103/s1068364x16110107
  26. Mankevich, A. N., Sukhanov, A. N., Samojlov, G. N., Tereshkov, S. V. (2004). Video camera for monitoring the lining of coke oven battery. Koks i Khimiya, 11, 36–37. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33744532647&partnerID=40&md5=bc554fee2bc99c63dda2642b8fb36069
  27. Lipunov, P. V., Motrich, S. V., Markov, V. I., Chura, N. G. (2014). Diagnostics of the heating system and lining of coke ovens. Coke and Chemistry, 57 (12), 489–492. doi: https://doi.org/10.3103/s1068364x14120035
  28. Garipov, R. R., Pershikov, A. V. (2019). Operation and Hot Repair of Coke-Oven Linings. Coke and Chemistry, 62 (2), 37–39. doi: https://doi.org/10.3103/s1068364x19020029
  29. Suhorukov, V. I., Shvetsov, V. I., Chemarda, N. A. (2004). Remont kladki i armiruyushchego oborudovaniya koksovyh batarey. Ekaterinburg, 483.
  30. Golubtsov, S. N., Kondrat’iev, A. F. (2013). Extending coke-oven life at Evraz Koks Siberia. Coke and Chemistry, 56 (10), 376–378. doi: https://doi.org/10.3103/s1068364x13100037
  31. Lobato, H. E., Camerucci, M. A. (2008). Soldadura cerámica: método de reparación de revestimientos refractarios de equipamientos industriales. Boletín de La Sociedad Española de Cerámica y Vidrio, 47 (2), 95–100. doi: https://doi.org/10.3989/cyv.2008.v47.i2.201
  32. Kal'yanov, K. G. (1980). Remont ogneupornoy kladki i ankerazha koksovyh pechey. Moscow: Metallurgiya, 96.
  33. Pravila tehnicheskoy ekspluatatsii koksohimicheskih predpriyatiy PTE (2017). Kharkiv, 282.
  34. Yamashita, H., Inamasu, H., Horinouchi, S., Takayama, N. (2006). Development of a ceramic welding machine for coke oven carbonization chamber. 4th International Congress on the Science and Technology of Ironmarking, ICSTI 2006, Proceedings, 398–401. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890264511&partnerID=40&md5=17fb2cfc13661c6c01da9919f38e69ad
  35. Zublev, D. G., Barsky, V. D., Kravchenko, A. V. (2017). Operation of the extreme heating channels in coke batteries. Coke and Chemistry, 60 (6), 231–233. doi: https://doi.org/10.3103/s1068364x17060096
  36. Parfenyuk, A. S., Tret'yakov, P. V., Vlasov, G. A., Kaufman, S. I. (2004). Tehnicheskoe sostoyanie kladki koksovyh batarey – vazhniy faktor ekologichnosti koksohimicheskogo predpriyatiya. Sb. trudov XI mezhdunarodnoy nauchno-tehnicheskoy konferentsii "Mashinostroenie i tehnosfera XXI veka". Vol. 3. Donetsk: DonNTU, 24–27.
  37. Tret'yakov, P. V., Parfenyuk, A. S. (2006). Obespechenie ekologicheskoy bezopasnosti i nadezhnosti termoliznyh pechey dlya pererabotki uglerodsoderzhashchih spekayushchihsya mass. Mashinostroenie i tehnosfera XXI veka. Sbornik trudov XIII mezhdunarodnoy nauchno-tehnicheskoy konferentsii. Vol. 5. Donetsk: DonNTU, 298–302.
  38. Toporov, A. A., Borovlov, V. M., Tretiakov, P. V. (2018). Defekty vohnetryvkykh elementiv opaliuvalnykh prostinkiv koksovykh ta pekokoksovykh pechei. Materialy XIX-MNTK «Prohresyvna tekhnika, tekhnolohiya ta inzhenerna osvita». Kyiv: Natsionalnyi tekhnichnyi universytet Ukrainy "Kyivskyi politekhnichnyi instytut imeni Ihoria Sikorskoho", 81–84.
  39. Bogdanoff, J. L., Kozin, F. (1985). Probabilistic Models of Cumulative Damage. Wiley, 341. Available at: https://books.google.com.ua/books?id=L5NRAAAAMAAJ&hl=ru&source=gbs_similarbooks
  40. Feller, W. (2008). An introduction to probability theory and its applications. Vol. 2. Wiley, 700. Available at: https://books.google.com.ua/books?id=OXkg-LvRgjUC
  41. Kadry, S. (2014). Statistics and Probability. Mathematical Formulas for Industrial and Mechanical Engineering, 113–123. doi: https://doi.org/10.1016/b978-0-12-420131-6.00006-3
  42. Cramér, H. (1999). Mathematical Methods of Statistics. Princeton University Press, 575. Available at: https://books.google.com.ua/books?id=CRTKKaJO0DYC
  43. Schmidt, K., Buhl, S., Davoudi, N., Godard, C., Merz, R., Raid, I. et. al. (2017). Ti surface modification by cold spraying with TiO2 microparticles. Surface and Coatings Technology, 309, 749–758. doi: https://doi.org/10.1016/j.surfcoat.2016.10.091
  44. Parfenyuk, A. S., Veretel'nik, S. P., Zborshchik, M. P., Sibilev, A. I., Trubnikov, L. I., Dorofeev, A. H. et. al. (1991). Pat. No. 1806163 SSSR. Otopitel'niy prostenok kamery koksovaniya. No. 4931946/04; declareted: 29.04.1991; published: 30.03.1993, Bul. No. 12.
  45. Parfenyuk, A. S., Kostina, E. D., Alekseeva, O. E., Britov, N. A., Tkachenko, V. N. (1997). Reduction of cracking in refractory structures of thermal setups. Refractories and Industrial Ceramics, 38 (3), 125–127. doi: https://doi.org/10.1007/bf02767795

Downloads

Published

2020-12-31

How to Cite

Tretiakov, P., Toporov, A., Aleksieieva, O., Kostina, O., & Borovlov, V. (2020). Revealing the patterns of change in the technical condition of refractory elements in thermal units during operation. Eastern-European Journal of Enterprise Technologies, 6(1 (108), 81–92. https://doi.org/10.15587/1729-4061.2020.216610

Issue

Section

Engineering technological systems