Revealing the patterns of change in the technical condition of refractory elements in thermal units during operation
DOI:
https://doi.org/10.15587/1729-4061.2020.216610Keywords:
refractory element, crack, change in technical condition, probability model, Markov chainsAbstract
Operating conditions of thermal units for processing raw materials predetermine defects in refractory elements resulting in their gradual accumulation, which leads to a change in technical condition. A large number of defects, their development, and the achievement of critical values lead to difficulties in modeling the physical processes of changing the technical condition of refractory elements.
This study has investigated the mechanism of the occurrence, development, and accumulation of defects in refractory elements, as well as the processes of cumulative accumulation of damages; a probability model of their degradation has been constructed. The model was built using Markov chains; it describes the sequences of change in the states of refractory element damage and the probability of transitions between these states. Based on the statistical data about a change in the state of damage, the model makes it possible to assess the probability of a defect reaching the critical condition following the predefined number of load cycles. A special feature of the model is the possibility of its application to individual defects, as well as to refractory elements on which defects occur and develop, as well as to assemblies where such refractory elements are installed.
The main patterns of change in the technical condition of refractory elements of coke ovens have been established: the distribution of cracks of a certain length according to the number of coke oven output cycles; the probability of the occurrence of a crack of a critical length at a certain point during operation; the dependence of the probability of a refractory element failure on the predefined number of coke oven output cycles.
Based on the modeling results, it has been proposed, in order to prevent the degradation of refractory elements, to strengthen the structure of the surface layer of the refractory element by cold gas-dynamic spraying, to arrange laying elements that would stop the evolution of defects, and to make up schedules of hot repairs based on the time when the defects may reach critical values, determined during modelingReferences
- Rudyka, V. I., Borodin, M. V. (1999). Problems in reconstruction of basic funds of coke and byproducts industry in Ukraine. Koks i Khimiya, 7, 22–25. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033164922&partnerID=40&md5=2ad13af22003d6ed9f459f6de1998199
- Miroshnichenko, I. V., Miroshnichenko, D. V., Shulga, I. V., Balaeva, Y. S., Pereima, V. V. (2019). Calorific Value of Coke. 1. Prediction. Coke and Chemistry, 62 (4), 143–149. doi: https://doi.org/10.3103/s1068364x19040057
- Shvetsov, V. I., Sukhorukov, V. I. (2009). Quality of refractories and the durability of coke furnaces. Coke and Chemistry, 52 (2), 60–69. doi: https://doi.org/10.3103/s1068364x09020045
- Parfenyuk, A. S., Tret'yakov, P. V., Kostina, E. D. (2004). Destruction of brickwork of coke oven battery. Koks i Khimiya, 8, 14–19. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-12244269101&partnerID=40&md5=933824ac1247c4a6bc62bd5400c85f6e
- Zublev, D. G., Novikov, N. A. (2019). Fifth Russian Coking Conference: A Report. Coke and Chemistry, 62 (11), 502–514. doi: https://doi.org/10.3103/s1068364x19110103
- Aksel'rod, L. M. et. al.; Kashcheeva, I. D., Grishenkova, E. E. (Eds.) (2002). Ogneupory dlya promyshlennyh agregatov i topok: Spravochnoe izdanie. Kn. 2. Sluzhba ogneuporov. Moscow: Intermet Inzhiniring, 656.
- Rudyka, V. I., Zingerman, Yu. E. (Eds.) (2014). Spravochnik koksohimika. Vol. 2. Proizvodstvo koksa. Kharkiv: Izdatel'skiy dom «Inzhek», 728.
- Mullinger, P., Jenkins, B. (2013). Furnace Construction and Materials. Industrial and Process Furnaces, 415–455. doi: https://doi.org/10.1016/b978-0-08-099377-5.00011-3
- Cameron, I., Sukhram, M., Lefebvre, K., Davenport, W. (2020). Metallurgical Coke - A Key to Blast Furnace Operations. Blast Furnace Ironmaking, 557–572. doi: https://doi.org/10.1016/b978-0-12-814227-1.00055-5
- Dvorak, S., Lang, K., Vasica, L. (2015). Development and production of high-density silica for coke ovens. AISTech - Iron and Steel Technology Conference Proceedings, 1, 161–163. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940488603&partnerID=40&md5=5fb417a91a89f646c0ae0b0572e117df
- Rudyka, V. I., Zingerman, Y. E., Kamenyuka, V. B., Minasov, A. N., Kononenko, V. S., Volkov, V. I. et. al. (2004). Improvement in design of coke oven battery. Koks i Khimiya, 7, 18–25. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-8644270629&partnerID=40&md5=2a4ddcff353e61733813fa230fb2180a
- Ronald, K., Martin, R., Rainer, W. (2009). Process model for heat recovery coke ovens. 5th International Congress on the Science and Technology of Ironmaking, ICSTI 2009, 393–397. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84883617085&partnerID=40&md5=a3322f89f1039ac3f67b6b86bbbea3d0
- Guelton, N., Rozhkova, T. V. (2015). Prediction of coke oven wall pressure. Fuel, 139, 692–703. doi: https://doi.org/10.1016/j.fuel.2014.09.042
- Zublev, D. G., Barsky, V. D. (2020). Hydraulic Analysis of Coke Ovens. Coke and Chemistry, 63 (4), 172–176. doi: https://doi.org/10.3103/s1068364x20040110
- Romas’ko, V. S. (2010). Deformation of coke-furnace heating walls under the action of nonsteady forces and temperatures. Coke and Chemistry, 53 (10), 382–385. doi: https://doi.org/10.3103/s1068364x10100054
- Krivoshein, V. T., Grinberg, E. I. (1994). Application of hydraulic devices for the reinforcement of coke ovens lining. Koks i Khimiya, 3, 33–35. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028388057&partnerID=40&md5=becc229875cfdb242a11daa3547152e0
- Gataullin, R. G., Bogdanov, V. F. (2018). Modification of Refractory Components in Russian Coke-Oven Linings. Coke and Chemistry, 61 (6), 209–212. doi: https://doi.org/10.3103/s1068364x18060029
- Das, S. P., Si, S., Prasad, B., Sahu, J. K., Panda, B. K., Tiwari, J. N., Sahoo, N. (2014). Development of Zero Expansion Silica Bricks for hot Repair of Coke Oven. Proceedings of the Unified International Technical Conference on Refractories (UNITECR 2013), 511–515. doi: https://doi.org/10.1002/9781118837009.ch88
- Primachenko, V. V., Pitak, N. V., Martynenko, V. V. (1997). Seventieth anniversary of the Ukrainian Research Institute of Refractories. Refractories and Industrial Ceramics, 38 (9-10), 335–344. doi: https://doi.org/10.1007/bf02767888
- Liu, S. X., Shen, L. L., Wang, Q. P. (2011). Properties of Ceramic Coatings on the Wall of Coke Oven. Advanced Materials Research, 189-193, 1105–1108. doi: https://doi.org/10.4028/www.scientific.net/amr.189-193.1105
- Pitak, Y. N., Prikhod’ko, Y. E., Gorbatko, S. V., Emchenko, I. V. (2010). Study of the properties of ceramic surfacing material used for restoring coking chamber linings. Refractories and Industrial Ceramics, 51 (2), 114–117. doi: https://doi.org/10.1007/s11148-010-9270-0
- Zhang, M., Han, C., Ni, K., Gu, H., Huang, A., Shao, Z. (2017). Improving mullite-silicon carbide refractory in coke dry quenching using aluminum nitride whiskers formed in situ. Ceramics International, 43 (18), 16993–16999. doi: https://doi.org/10.1016/j.ceramint.2017.09.107
- Imai, H., Matsuoka, S. (2006). Direct Welding of Metals and Ceramics by Ultrasonic Vibration. JSME International Journal Series A, 49 (3), 444–450. doi: https://doi.org/10.1299/jsmea.49.444
- Goffi, E. D., Kerr, P. D., Randolph, R. A. (2008). Strategic coke battery maintenance provides battery life extension. ANNALS - 3rd International Meeting on Ironmaking and 2nd International Symposium on Iron Ore, 1184–1190. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-62549147777&partnerID=40&md5=325658a04310b8b7543062aff95d684b
- Zublev, D. G., Barsky, V. D. (2016). Determining the air excess in the heating of coke furnaces. 2. Sampling and analysis. Coke and Chemistry, 59 (11), 414–416. doi: https://doi.org/10.3103/s1068364x16110107
- Mankevich, A. N., Sukhanov, A. N., Samojlov, G. N., Tereshkov, S. V. (2004). Video camera for monitoring the lining of coke oven battery. Koks i Khimiya, 11, 36–37. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33744532647&partnerID=40&md5=bc554fee2bc99c63dda2642b8fb36069
- Lipunov, P. V., Motrich, S. V., Markov, V. I., Chura, N. G. (2014). Diagnostics of the heating system and lining of coke ovens. Coke and Chemistry, 57 (12), 489–492. doi: https://doi.org/10.3103/s1068364x14120035
- Garipov, R. R., Pershikov, A. V. (2019). Operation and Hot Repair of Coke-Oven Linings. Coke and Chemistry, 62 (2), 37–39. doi: https://doi.org/10.3103/s1068364x19020029
- Suhorukov, V. I., Shvetsov, V. I., Chemarda, N. A. (2004). Remont kladki i armiruyushchego oborudovaniya koksovyh batarey. Ekaterinburg, 483.
- Golubtsov, S. N., Kondrat’iev, A. F. (2013). Extending coke-oven life at Evraz Koks Siberia. Coke and Chemistry, 56 (10), 376–378. doi: https://doi.org/10.3103/s1068364x13100037
- Lobato, H. E., Camerucci, M. A. (2008). Soldadura cerámica: método de reparación de revestimientos refractarios de equipamientos industriales. Boletín de La Sociedad Española de Cerámica y Vidrio, 47 (2), 95–100. doi: https://doi.org/10.3989/cyv.2008.v47.i2.201
- Kal'yanov, K. G. (1980). Remont ogneupornoy kladki i ankerazha koksovyh pechey. Moscow: Metallurgiya, 96.
- Pravila tehnicheskoy ekspluatatsii koksohimicheskih predpriyatiy PTE (2017). Kharkiv, 282.
- Yamashita, H., Inamasu, H., Horinouchi, S., Takayama, N. (2006). Development of a ceramic welding machine for coke oven carbonization chamber. 4th International Congress on the Science and Technology of Ironmarking, ICSTI 2006, Proceedings, 398–401. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890264511&partnerID=40&md5=17fb2cfc13661c6c01da9919f38e69ad
- Zublev, D. G., Barsky, V. D., Kravchenko, A. V. (2017). Operation of the extreme heating channels in coke batteries. Coke and Chemistry, 60 (6), 231–233. doi: https://doi.org/10.3103/s1068364x17060096
- Parfenyuk, A. S., Tret'yakov, P. V., Vlasov, G. A., Kaufman, S. I. (2004). Tehnicheskoe sostoyanie kladki koksovyh batarey – vazhniy faktor ekologichnosti koksohimicheskogo predpriyatiya. Sb. trudov XI mezhdunarodnoy nauchno-tehnicheskoy konferentsii "Mashinostroenie i tehnosfera XXI veka". Vol. 3. Donetsk: DonNTU, 24–27.
- Tret'yakov, P. V., Parfenyuk, A. S. (2006). Obespechenie ekologicheskoy bezopasnosti i nadezhnosti termoliznyh pechey dlya pererabotki uglerodsoderzhashchih spekayushchihsya mass. Mashinostroenie i tehnosfera XXI veka. Sbornik trudov XIII mezhdunarodnoy nauchno-tehnicheskoy konferentsii. Vol. 5. Donetsk: DonNTU, 298–302.
- Toporov, A. A., Borovlov, V. M., Tretiakov, P. V. (2018). Defekty vohnetryvkykh elementiv opaliuvalnykh prostinkiv koksovykh ta pekokoksovykh pechei. Materialy XIX-MNTK «Prohresyvna tekhnika, tekhnolohiya ta inzhenerna osvita». Kyiv: Natsionalnyi tekhnichnyi universytet Ukrainy "Kyivskyi politekhnichnyi instytut imeni Ihoria Sikorskoho", 81–84.
- Bogdanoff, J. L., Kozin, F. (1985). Probabilistic Models of Cumulative Damage. Wiley, 341. Available at: https://books.google.com.ua/books?id=L5NRAAAAMAAJ&hl=ru&source=gbs_similarbooks
- Feller, W. (2008). An introduction to probability theory and its applications. Vol. 2. Wiley, 700. Available at: https://books.google.com.ua/books?id=OXkg-LvRgjUC
- Kadry, S. (2014). Statistics and Probability. Mathematical Formulas for Industrial and Mechanical Engineering, 113–123. doi: https://doi.org/10.1016/b978-0-12-420131-6.00006-3
- Cramér, H. (1999). Mathematical Methods of Statistics. Princeton University Press, 575. Available at: https://books.google.com.ua/books?id=CRTKKaJO0DYC
- Schmidt, K., Buhl, S., Davoudi, N., Godard, C., Merz, R., Raid, I. et. al. (2017). Ti surface modification by cold spraying with TiO2 microparticles. Surface and Coatings Technology, 309, 749–758. doi: https://doi.org/10.1016/j.surfcoat.2016.10.091
- Parfenyuk, A. S., Veretel'nik, S. P., Zborshchik, M. P., Sibilev, A. I., Trubnikov, L. I., Dorofeev, A. H. et. al. (1991). Pat. No. 1806163 SSSR. Otopitel'niy prostenok kamery koksovaniya. No. 4931946/04; declareted: 29.04.1991; published: 30.03.1993, Bul. No. 12.
- Parfenyuk, A. S., Kostina, E. D., Alekseeva, O. E., Britov, N. A., Tkachenko, V. N. (1997). Reduction of cracking in refractory structures of thermal setups. Refractories and Industrial Ceramics, 38 (3), 125–127. doi: https://doi.org/10.1007/bf02767795
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Pavlo Tretiakov, Andrii Toporov, Olha Aleksieieva, Olena Kostina, Viacheslav Borovlov
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.