Design of slag cement, activated by Na (K) salts of strong acids, for concrete reinforced with steel fittings
DOI:
https://doi.org/10.15587/1729-4061.2020.217002Keywords:
slag cement, steel reinforcement, cement kiln dust, AFm phase, structure formationAbstract
This paper proposes a technique to prevent the corrosion of steel reinforcement in concrete based on slag cement (SC) activated by Na(K) salts of strong acids (SSA) in the composition of by-pass cement kiln dust (BP). The technique implies using additional modifiers in the form of the Portland cement CEM I 42,5 R and the calcium-aluminate admixture (CAA) С3А∙6H2O.
It is shown that adding the Portland cement contributes to enhancing the intensifying influence of BP on the SC hydration, accompanied by an increase in the strength of artificial stone. This effect is predetermined by the formation of hydrosilicates in hydration products with an increased crystallization degree in the form of CSH(I) and C2SH(A).
Modifying SC with CAA ensures the intensive formation of low-soluble AFm phases in the composition of hydration products, aimed at reliable binding the SSA anions (Cl-, SO42-) that are aggressive to steel reinforcement.
The study result has established the possibility to produce SC, activated by SSA, when using BP, the Portland cement, and CAA. Mathematical methods to plan the experiment were applied to produce an SC composition of "granulated blast furnace slag – BP – Portland cement – CAA", characterized by a strength class of 42.5 and a molar ratio of Cl-/OH- in a porous solution not exceeding 0.6. The resulting properties predetermine the feasibility of using SC in steel-reinforced concrete.
The relevance of this work is due to the modern trends in the development of the construction industry. The introduction of cement that contains mineral additives, in particular granulated blast furnace slag, contributes to improving the environment by reducing СО2 emission. The use of such cement as a base of steel-reinforced concrete ensures the increase in their functionality and durability
References
- Abyzov, V. A., Pushkarova, K. K., Kochevykh, M. O., Honchar, O. A., Bazeliuk, N. L. (2020). Innovative building materials in creation an architectural environment. IOP Conference Series: Materials Science and Engineering, 907, 012035. doi: https://doi.org/10.1088/1757-899x/907/1/012035
- Anopko, D. V., Honchar, O. A., Kochevykh, M. O., Kushnierova, L. O. (2020). Radiation protective properties of fine-grained concretes and their radiation resistance. IOP Conference Series: Materials Science and Engineering, 907, 012031. doi: https://doi.org/10.1088/1757-899x/907/1/012031
- Krivenko, P., Petropavlovskyi, O., Kovalchuk, O., Rudenko, I., Konstantynovskyi, O. (2020). Enhancement of alkali-activated slag cement concretes crack resistance for mitigation of steel reinforcement corrosion. E3S Web of Conferences, 166, 06001. doi: https://doi.org/10.1051/e3sconf/202016606001
- Sanytsky, M., Kropyvnytska, T., Fic, S., Ivashchyshyn, H. (2020). Sustainable low-carbon binders and concretes. E3S Web of Conferences, 166, 06007. doi: https://doi.org/10.1051/e3sconf/202016606007
- Kropyvnytska, T., Rucinska, T., Ivashchyshyn, H., Kotiv, R. (2020). Development of Eco-Efficient Composite Cements with High Early Strength. Lecture Notes in Civil Engineering, 211–218. doi: https://doi.org/10.1007/978-3-030-27011-7_27
- Markiv, T., Sobol, K., Petrovska, N., Hunyak, O. (2020). The Effect of Porous Pozzolanic Polydisperse Mineral Components on Properties of Concrete. Lecture Notes in Civil Engineering, 275–282. doi: https://doi.org/10.1007/978-3-030-27011-7_35
- Markiv, T., Sobol, K., Franus, M., Franus, W. (2016). Mechanical and durability properties of concretes incorporating natural zeolite. Archives of Civil and Mechanical Engineering, 16 (4), 554–562. doi: https://doi.org/10.1016/j.acme.2016.03.013
- Chepurna, S., Borziak, O., Zubenko, S. (2019). Concretes, Modified by the Addition of High-Diffused Chalk, for Small Architectural Forms. Materials Science Forum, 968, 82–88. doi: https://doi.org/10.4028/www.scientific.net/msf.968.82
- Moskalenko, O., Runova, R. (2016). Ice Formation as an Indicator of Frost-Resistance on the Concrete Containing Slag Cement in Conditions of Freezing and Thawing. Materials Science Forum, 865, 145–150. doi: https://doi.org/10.4028/www.scientific.net/msf.865.145
- Krivenko, P. (2017). Why Alkaline Activation – 60 Years of the Theory and Practice of Alkali-Activated Materials. Journal of Ceramic Science and Technology, 8 (3), 323–334. doi: https://doi.org/10.4416/JCST2017-00042
- Berdnyk, O. Y., Lastivka, O. V., Maystrenko, A. A., Amelina, N. O. (2020). Processes of structure formation and neoformation of basalt fiber in an alkaline environment. IOP Conference Series: Materials Science and Engineering, 907, 012036. doi: https://doi.org/10.1088/1757-899x/907/1/012036
- Pavel, K., Oleg, P., Hryhorii, V., Serhii, L. (2017). The Development of Alkali-activated Cement Mixtures for Fast Rehabilitation and Strengthening of Concrete Structures. Procedia Engineering, 195, 142–146. doi: https://doi.org/10.1016/j.proeng.2017.04.536
- Panias, D., Balomenos, E., Sakkas, K. (2015). The fire resistance of alkali-activated cement-based concrete binders. Handbook of Alkali-Activated Cements, Mortars and Concretes, 423–461. doi: https://doi.org/10.1533/9781782422884.3.423
- Kovalchuk, O., Grabovchak, V., Govdun, Y. (2018). Alkali activated cements mix design for concretes application in high corrosive conditions. MATEC Web of Conferences, 230, 03007. doi: https://doi.org/10.1051/matecconf/201823003007
- Kryvenko, P., Guzii, S., Kovalchuk, O., Kyrychok, V. (2016). Sulfate Resistance of Alkali Activated Cements. Materials Science Forum, 865, 95–106. doi: https://doi.org/10.4028/www.scientific.net/msf.865.95
- Cyr, M., Pouhet, R. (2015). The frost resistance of alkali-activated cement-based binders. Handbook of Alkali-Activated Cements, Mortars and Concretes, 293–318. doi: https://doi.org/10.1533/9781782422884.3.293
- Savchuk, Y., Plugin, A., Lyuty, V., Pluhin, O., Borziak, O. (2018). Study of influence of the alkaline component on the physico-mechanical properties of the low clinker and clinkerless waterproof compositions. MATEC Web of Conferences, 230, 03018. doi: https://doi.org/10.1051/matecconf/201823003018
- Gots, V. I., Gelevera, A. G., Petropavlovsky, O. N., Rogozina, N. V., Smeshko, V. V. (2020). Influence of whitening additives on the properties of decorative slag-alkaline cements. IOP Conference Series: Materials Science and Engineering, 907, 012033. doi: https://doi.org/10.1088/1757-899x/907/1/012033
- Kryvenko, P., Hailin, C., Petropavlovskyi, O., Weng, L., Kovalchuk, O. (2016). Applicability of alkali-activated cement for immobilization of low-level radioactive waste in ion-exchange resins. Eastern-European Journal of Enterprise Technologies, 1 (6 (79)), 40–45. doi: https://doi.org/10.15587/1729-4061.2016.59489
- Kochetov, G., Prikhna, T., Kovalchuk, O., Samchenko, D. (2018). Research of the treatment of depleted nickelplating electrolytes by the ferritization method. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 52–60. doi: https://doi.org/10.15587/1729-4061.2018.133797
- Runova, R., Gots, V., Rudenko, I., Konstantynovskyi, O., Lastivka, O. (2018). The efficiency of plasticizing surfactants in alkali-activated cement mortars and concretes. MATEC Web of Conferences, 230, 03016. doi: https://doi.org/10.1051/matecconf/201823003016
- Rudenko, I. I., Konstantynovskyi, O. P., Kovalchuk, A. V., Nikolainko, M. V., Obremsky, D. V. (2018). Efficiency of Redispersible Polymer Powders in Mortars for Anchoring Application Based on Alkali Activated Portland Cements. Key Engineering Materials, 761, 27–30. doi: https://doi.org/10.4028/www.scientific.net/kem.761.27
- Krivenko, P. V., Rudenko, I. I., Petropavlovskyi, O. M., Konstantynovskyi, O. P., Kovalchuk, A. V. (2019). Alkali-activated Portland cement with adjustable proper deformations for anchoring application. IOP Conference Series: Materials Science and Engineering, 708, 012090. doi: https://doi.org/10.1088/1757-899x/708/1/012090
- Krivenko, P. V., Petropavlovskyi, O. M., Rudenko, I. I., Konstantynovskyi, O. P., Kovalchuk, A. V. (2020). Complex multifunctional additive for anchoring grout based on alkali-activated portland cement. IOP Conference Series: Materials Science and Engineering, 907, 012055. doi: https://doi.org/10.1088/1757-899x/907/1/012055
- Kropyvnytska, T. P., Kaminskyy, A. T., Semeniv, R. M., Chekaylo, M. V. (2019). The effect of sodium aluminate on the properties of the composite cements. IOP Conference Series: Materials Science and Engineering, 708, 012091. doi: https://doi.org/10.1088/1757-899x/708/1/012091
- Bai, Y., Collier, N. C., Milestone, N. B., Yang, C. H. (2011). The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals. Journal of Nuclear Materials, 413 (3), 183–192. doi: https://doi.org/10.1016/j.jnucmat.2011.04.011
- Bernal, S. A. (2016). Advances in near-neutral salts activation of blast furnace slags. RILEM Technical Letters, 1, 39. doi: https://doi.org/10.21809/rilemtechlett.v1.8
- Mobasher, N., Bernal, S. A., Hussain, O. H., Apperley, D. C., Kinoshita, H., Provis, J. L. (2014). Characterisation of Ba(OH)2–Na2SO4–blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes. Cement and Concrete Research, 66, 64–74. doi: https://doi.org/10.1016/j.cemconres.2014.07.006
- Mobasher, N., Bernal, S. A., Provis, J. L. (2016). Structural evolution of an alkali sulfate activated slag cement. Journal of Nuclear Materials, 468, 97–104. doi: https://doi.org/10.1016/j.jnucmat.2015.11.016
- Krivenko, P., Sanytsky, M., Kropyvnytska, T. (2018). Alkali-Sulfate Activated Blended Portland Cements. Solid State Phenomena, 276, 9–14. doi: https://doi.org/10.4028/www.scientific.net/ssp.276.9
- Bilek, V., Kalina, L., Simonova, H. (2019). Effect of curing environment on length changes of alkali-activated slag/cement kiln by-pass dust mixtures. IOP Conference Series: Materials Science and Engineering, 583, 012017. doi: https://doi.org/10.1088/1757-899x/583/1/012017
- Maslehuddin, M., Al-Amoudi, O. S. B., Shameem, M., Rehman, M. K., Ibrahim, M. (2008). Usage of cement kiln dust in cement products – Research review and preliminary investigations. Construction and Building Materials, 22 (12), 2369–2375. doi: https://doi.org/10.1016/j.conbuildmat.2007.09.005
- Bílek Jr., V., Kalina, L., Bartoníčková, E., Opravil, T. (2014). Influence of Industrial By-Products on Shrinkage of Alkali-Activated Slag. Advanced Materials Research, 1000, 137–140. doi: https://doi.org/10.4028/www.scientific.net/amr.1000.137
- Krivenko, P. V., Petropavlovskyi, O., Rudenko, I., Konstantynovskyi, O. P. (2019). The Influence of Complex Additive on Strength and Proper Deformations of Alkali-Activated Slag Cements. Materials Science Forum, 968, 13–19. doi: https://doi.org/10.4028/www.scientific.net/msf.968.13
- Collier, N. C., Li, X., Bai, Y., Milestone, N. B. (2015). The effect of sulfate activation on the early age hydration of BFS:PC composite cement. Journal of Nuclear Materials, 464, 128–134. doi: https://doi.org/10.1016/j.jnucmat.2015.04.044
- Aliabdo, A. A., Abd Elmoaty, A. E. M., Emam, M. A. (2019). Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete. Construction and Building Materials, 197, 339–355. doi: https://doi.org/10.1016/j.conbuildmat.2018.11.086
- Bílek Jr., V., Pařízek, L., Kosár, P., Kratochvíl, J., Kalina, L. (2016). Strength and Porosity of Materials on the Basis of Blast Furnace Slag Activated by Liquid Sodium Silicate. Materials Science Forum, 851, 45–50. doi: https://doi.org/10.4028/www.scientific.net/msf.851.45
- Criado, M. (2015). The corrosion behaviour of reinforced steel embedded in alkali-activated mortar. Handbook of Alkali-Activated Cements, Mortars and Concretes, 333–372. doi: https://doi.org/10.1533/9781782422884.3.333
- Buchwald, A., Schulz, M. (2005). Alkali-activated binders by use of industrial by-products. Cement and Concrete Research, 35 (5), 968–973. doi: https://doi.org/10.1016/j.cemconres.2004.06.019
- Bernal, S. A., Ke, X., Provis, J. L. (2015). Activation of slags using near-neutral salts: The importance of the slag chemistry. 14th International Congress on Chemistry of Cement. Beijing.
- Krivenko, P., Gots, V., Petropavlovskyi, O., Rudenko, I., Konstantynovskyi, O., Kovalchuk, A. (2019). Development of solutions concerning regulation of proper deformations in alkali-activated cements. Eastern-European Journal of Enterprise Technologies, 5 (6 (101)), 24–32. doi: https://doi.org/10.15587/1729-4061.2019.181150
- Rashad, A. M., Bai, Y., Basheer, P. A. M., Milestone, N. B., Collier, N. C. (2013). Hydration and properties of sodium sulfate activated slag. Cement and Concrete Composites, 37, 20–29. doi: https://doi.org/10.1016/j.cemconcomp.2012.12.010
- Wu, P., Wang, J., Lian, M., Lyu, X. (2019). Preparation of slag based cementitious material and its application in the cementation of tailings. In IMPC 2018 - 29th International Mineral Processing Congress, 3122–3137.
- Rashad, A. M., Bai, Y., Basheer, P. A. M., Collier, N. C., Milestone, N. B. (2012). Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cement and Concrete Research, 42 (2), 333–343. doi: https://doi.org/10.1016/j.cemconres.2011.10.007
- Mobasher, N., Kinoshita, H., Bernal, S. A., Sharrard, C. A. (2014). Ba(OH)2– blast furnace slag composite binders for encapsulation of sulphate bearing nuclear waste. Advances in Applied Ceramics, 113 (8), 460–465. doi: https://doi.org/10.1179/1743676114y.0000000148
- Omelchuk, V., Ye, G., Runova, R., Rudenko, I. I. (2018). Shrinkage Behavior of Alkali-Activated Slag Cement Pastes. Key Engineering Materials, 761, 45–48. doi: https://doi.org/10.4028/www.scientific.net/kem.761.45
- Khan, M. S. H., Kayali, O. (2016). Chloride binding ability and the onset corrosion threat on alkali-activated GGBFS and binary blend pastes. European Journal of Environmental and Civil Engineering, 22 (8), 1023–1039. doi: https://doi.org/10.1080/19648189.2016.1230522
- Maes, M., Gruyaert, E., De Belie, N. (2012). Resistance of concrete with blast-furnace slag against chlorides, investigated by comparing chloride profiles after migration and diffusion. Materials and Structures, 46 (1-2), 89–103. doi: https://doi.org/10.1617/s11527-012-9885-3
- De Weerdt, K., Orsáková, D., Geiker, M. R. (2014). The impact of sulphate and magnesium on chloride binding in Portland cement paste. Cement and Concrete Research, 65, 30–40. doi: https://doi.org/10.1016/j.cemconres.2014.07.007
- Clark, B. A., Brown, P. W. (2000). The formation of calcium sulfoaluminate hydrate compounds: Part II. Cement and Concrete Research, 30 (2), 233–240. doi: https://doi.org/10.1016/s0008-8846(99)00234-3
- Runci, A., Serdar, M., Provis, J. (2019). Chloride-induced corrosion of steel embedded in alkali-activated materials: state of the art. 5th Symposium on Doctoral Studies in Civil Engineering, 175–185. doi: https://doi.org/10.5592/co/phdsym.2019.15
- Ye, H., Huang, L., Chen, Z. (2019). Influence of activator composition on the chloride binding capacity of alkali-activated slag. Cement and Concrete Composites, 104, 103368. doi: https://doi.org/10.1016/j.cemconcomp.2019.103368
- Honorio, T., Guerra, P., Bourdot, A. (2020). Molecular simulation of the structure and elastic properties of ettringite and monosulfoaluminate. Cement and Concrete Research, 135, 106126. doi: https://doi.org/10.1016/j.cemconres.2020.106126
- Baquerizo, L. G., Matschei, T., Scrivener, K. L., Saeidpour, M., Wadsö, L. (2015). Hydration states of AFm cement phases. Cement and Concrete Research, 73, 143–157. doi: https://doi.org/10.1016/j.cemconres.2015.02.011
- Plugin, A. A., Borziak, O. S., Pluhin, O. A., Kostuk, T. A., Plugin, D. A. (2020). Hydration Products that Provide Water-Repellency for Portland Cement-Based Waterproofing Compositions and Their Identification by Physical and Chemical Methods. Proceedings of EcoComfort 2020. Lecture Notes in Civil Engineering, 328–335. doi: https://doi.org/10.1007/978-3-030-57340-9_40
- Babaee, M., Castel, A. (2018). Chloride diffusivity, chloride threshold, and corrosion initiation in reinforced alkali-activated mortars: Role of calcium, alkali, and silicate content. Cement and Concrete Research, 111, 56–71. doi: https://doi.org/10.1016/j.cemconres.2018.06.009
- Mesbah, A., Cau-dit-Coumes, C., Frizon, F., Leroux, F., Ravaux, J., Renaudin, G. (2011). A New Investigation of the Cl−-CO32− Substitution in AFm Phases. Journal of the American Ceramic Society, 94 (6), 1901–1910. doi: https://doi.org/10.1111/j.1551-2916.2010.04305.x
- Geng, J., Yang, H., Mo, L. (2015). Effect of attack of sodium sulfate solution on the stability of bounded chloride ions. Jianzhu Cailiao Xuebao/Journal of Building Materials, 18 (6), 919–925. doi: https://doi.org/10.3969/j.issn.1007-9629.2015.06.001
- Park, J. W., Ann, K. Y., Cho, C.-G. (2015). Resistance of Alkali-Activated Slag Concrete to Chloride-Induced Corrosion. Advances in Materials Science and Engineering, 2015, 1–7. doi: https://doi.org/10.1155/2015/273101
- Pushkareva, K. K., Gonchar, O. A., Kaverin, K. O. (2019). The role of the crystallo-chemical factor in the evaluation and improvement of the nanomodification efficiency of mortar and concrete. IOP Conference Series: Materials Science and Engineering, 708, 012102. doi: https://doi.org/10.1088/1757-899x/708/1/012102
- Vollpracht, A., Lothenbach, B., Snellings, R., Haufe, J. (2015). The pore solution of blended cements: a review. Materials and Structures, 49 (8), 3341–3367. doi: https://doi.org/10.1617/s11527-015-0724-1
- Krivenko, P. V., Guzii, S. G., Bondarenko, O. P. (2019). Alkaline Aluminosilicate Binder-Based Adhesives with Increased Fire Resistance for Structural Timber Elements. Key Engineering Materials, 808, 172–176. doi: https://doi.org/10.4028/www.scientific.net/kem.808.172
- Tsapko, Y., Zavialov, D., Bondarenko, O., Marchenco, N., Mazurchuk, S., Horbachova, O. (2019). Determination of thermal and physical characteristics of dead pine wood thermal insulation products. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 37–43. doi: https://doi.org/10.15587/1729-4061.2019.175346
- Tsapko, Y., Bondarenko, O. P., Tsapko, A. (2019). Research of the Efficiency of the Fire Fighting Roof Composition for Cane. Materials Science Forum, 968, 61–67. doi: https://doi.org/10.4028/www.scientific.net/msf.968.61
- Plugin, A. A., Pluhin, O. A., Borziak, O. S., Kaliuzhna, O. V. (2019). The Mechanism of a Penetrative Action for Portland Cement-Based Waterproofing Compositions. Lecture Notes in Civil Engineering, 34–41. doi: https://doi.org/10.1007/978-3-030-27011-7_5
- Krivenko, P., Gots, V., Runova, R., Rudenko, I., Lastivka, O. (2013). Features of Alkali-Activated Slag Portland Cement. 1st Intern. Conf. on the Chemistry of Construction Materials. Berlin, 453–456.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Pavlo Kryvenko, Igor Rudenko, Oleksandr Konstantynovskyi
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.