Design of slag cement, activated by Na (K) salts of strong acids, for concrete reinforced with steel fittings

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.217002

Keywords:

slag cement, steel reinforcement, cement kiln dust, AFm phase, structure formation

Abstract

This paper proposes a technique to prevent the corrosion of steel reinforcement in concrete based on slag cement (SC) activated by Na(K) salts of strong acids (SSA) in the composition of by-pass cement kiln dust (BP). The technique implies using additional modifiers in the form of the Portland cement CEM I 42,5 R and the calcium-aluminate admixture (CAA) С3А∙6H2O.

It is shown that adding the Portland cement contributes to enhancing the intensifying influence of BP on the SC hydration, accompanied by an increase in the strength of artificial stone. This effect is predetermined by the formation of hydrosilicates in hydration products with an increased crystallization degree in the form of CSH(I) and C2SH(A).

Modifying SC with CAA ensures the intensive formation of low-soluble AFm phases in the composition of hydration products, aimed at reliable binding the SSA anions (Cl-, SO42-) that are aggressive to steel reinforcement.

The study result has established the possibility to produce SC, activated by SSA, when using BP, the Portland cement, and CAA. Mathematical methods to plan the experiment were applied to produce an SC composition of "granulated blast furnace slag – BP – Portland cement – CAA", characterized by a strength class of 42.5 and a molar ratio of Cl-/OH- in a porous solution not exceeding 0.6. The resulting properties predetermine the feasibility of using SC in steel-reinforced concrete.

The relevance of this work is due to the modern trends in the development of the construction industry. The introduction of cement that contains mineral additives, in particular granulated blast furnace slag, contributes to improving the environment by reducing СО2 emission. The use of such cement as a base of steel-reinforced concrete ensures the increase in their functionality and durability

Author Biographies

Pavlo Kryvenko, Kyiv National University of Construction and Architecture Povitroflotskyi ave., 31, Kyiv, Ukraine, 03037

Doctor of Technical Sciences, Professor

Scientific-Research Institute for Binders and Materials

Igor Rudenko, Kyiv National University of Construction and Architecture Povitroflotskyi ave., 31, Kyiv, Ukraine, 03037

PhD, Senior Researcher

Scientific-Research Institute for Binders and Materials

Oleksandr Konstantynovskyi, Kyiv National University of Construction and Architecture Povitroflotskyi ave., 31, Kyiv, Ukraine, 03037

PhD, Associate Professor

Department of Building Constructions and Products

References

  1. Abyzov, V. A., Pushkarova, K. K., Kochevykh, M. O., Honchar, O. A., Bazeliuk, N. L. (2020). Innovative building materials in creation an architectural environment. IOP Conference Series: Materials Science and Engineering, 907, 012035. doi: https://doi.org/10.1088/1757-899x/907/1/012035
  2. Anopko, D. V., Honchar, O. A., Kochevykh, M. O., Kushnierova, L. O. (2020). Radiation protective properties of fine-grained concretes and their radiation resistance. IOP Conference Series: Materials Science and Engineering, 907, 012031. doi: https://doi.org/10.1088/1757-899x/907/1/012031
  3. Krivenko, P., Petropavlovskyi, O., Kovalchuk, O., Rudenko, I., Konstantynovskyi, O. (2020). Enhancement of alkali-activated slag cement concretes crack resistance for mitigation of steel reinforcement corrosion. E3S Web of Conferences, 166, 06001. doi: https://doi.org/10.1051/e3sconf/202016606001
  4. Sanytsky, M., Kropyvnytska, T., Fic, S., Ivashchyshyn, H. (2020). Sustainable low-carbon binders and concretes. E3S Web of Conferences, 166, 06007. doi: https://doi.org/10.1051/e3sconf/202016606007
  5. Kropyvnytska, T., Rucinska, T., Ivashchyshyn, H., Kotiv, R. (2020). Development of Eco-Efficient Composite Cements with High Early Strength. Lecture Notes in Civil Engineering, 211–218. doi: https://doi.org/10.1007/978-3-030-27011-7_27
  6. Markiv, T., Sobol, K., Petrovska, N., Hunyak, O. (2020). The Effect of Porous Pozzolanic Polydisperse Mineral Components on Properties of Concrete. Lecture Notes in Civil Engineering, 275–282. doi: https://doi.org/10.1007/978-3-030-27011-7_35
  7. Markiv, T., Sobol, K., Franus, M., Franus, W. (2016). Mechanical and durability properties of concretes incorporating natural zeolite. Archives of Civil and Mechanical Engineering, 16 (4), 554–562. doi: https://doi.org/10.1016/j.acme.2016.03.013
  8. Chepurna, S., Borziak, O., Zubenko, S. (2019). Concretes, Modified by the Addition of High-Diffused Chalk, for Small Architectural Forms. Materials Science Forum, 968, 82–88. doi: https://doi.org/10.4028/www.scientific.net/msf.968.82
  9. Moskalenko, O., Runova, R. (2016). Ice Formation as an Indicator of Frost-Resistance on the Concrete Containing Slag Cement in Conditions of Freezing and Thawing. Materials Science Forum, 865, 145–150. doi: https://doi.org/10.4028/www.scientific.net/msf.865.145
  10. Krivenko, P. (2017). Why Alkaline Activation – 60 Years of the Theory and Practice of Alkali-Activated Materials. Journal of Ceramic Science and Technology, 8 (3), 323–334. doi: https://doi.org/10.4416/JCST2017-00042
  11. Berdnyk, O. Y., Lastivka, O. V., Maystrenko, A. A., Amelina, N. O. (2020). Processes of structure formation and neoformation of basalt fiber in an alkaline environment. IOP Conference Series: Materials Science and Engineering, 907, 012036. doi: https://doi.org/10.1088/1757-899x/907/1/012036
  12. Pavel, K., Oleg, P., Hryhorii, V., Serhii, L. (2017). The Development of Alkali-activated Cement Mixtures for Fast Rehabilitation and Strengthening of Concrete Structures. Procedia Engineering, 195, 142–146. doi: https://doi.org/10.1016/j.proeng.2017.04.536
  13. Panias, D., Balomenos, E., Sakkas, K. (2015). The fire resistance of alkali-activated cement-based concrete binders. Handbook of Alkali-Activated Cements, Mortars and Concretes, 423–461. doi: https://doi.org/10.1533/9781782422884.3.423
  14. Kovalchuk, O., Grabovchak, V., Govdun, Y. (2018). Alkali activated cements mix design for concretes application in high corrosive conditions. MATEC Web of Conferences, 230, 03007. doi: https://doi.org/10.1051/matecconf/201823003007
  15. Kryvenko, P., Guzii, S., Kovalchuk, O., Kyrychok, V. (2016). Sulfate Resistance of Alkali Activated Cements. Materials Science Forum, 865, 95–106. doi: https://doi.org/10.4028/www.scientific.net/msf.865.95
  16. Cyr, M., Pouhet, R. (2015). The frost resistance of alkali-activated cement-based binders. Handbook of Alkali-Activated Cements, Mortars and Concretes, 293–318. doi: https://doi.org/10.1533/9781782422884.3.293
  17. Savchuk, Y., Plugin, A., Lyuty, V., Pluhin, O., Borziak, O. (2018). Study of influence of the alkaline component on the physico-mechanical properties of the low clinker and clinkerless waterproof compositions. MATEC Web of Conferences, 230, 03018. doi: https://doi.org/10.1051/matecconf/201823003018
  18. Gots, V. I., Gelevera, A. G., Petropavlovsky, O. N., Rogozina, N. V., Smeshko, V. V. (2020). Influence of whitening additives on the properties of decorative slag-alkaline cements. IOP Conference Series: Materials Science and Engineering, 907, 012033. doi: https://doi.org/10.1088/1757-899x/907/1/012033
  19. Kryvenko, P., Hailin, C., Petropavlovskyi, O., Weng, L., Kovalchuk, O. (2016). Applicability of alkali-activated cement for immobilization of low-level radioactive waste in ion-exchange resins. Eastern-European Journal of Enterprise Technologies, 1 (6 (79)), 40–45. doi: https://doi.org/10.15587/1729-4061.2016.59489
  20. Kochetov, G., Prikhna, T., Kovalchuk, O., Samchenko, D. (2018). Research of the treatment of depleted nickel­plating electrolytes by the ferritization method. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 52–60. doi: https://doi.org/10.15587/1729-4061.2018.133797
  21. Runova, R., Gots, V., Rudenko, I., Konstantynovskyi, O., Lastivka, O. (2018). The efficiency of plasticizing surfactants in alkali-activated cement mortars and concretes. MATEC Web of Conferences, 230, 03016. doi: https://doi.org/10.1051/matecconf/201823003016
  22. Rudenko, I. I., Konstantynovskyi, O. P., Kovalchuk, A. V., Nikolainko, M. V., Obremsky, D. V. (2018). Efficiency of Redispersible Polymer Powders in Mortars for Anchoring Application Based on Alkali Activated Portland Cements. Key Engineering Materials, 761, 27–30. doi: https://doi.org/10.4028/www.scientific.net/kem.761.27
  23. Krivenko, P. V., Rudenko, I. I., Petropavlovskyi, O. M., Konstantynovskyi, O. P., Kovalchuk, A. V. (2019). Alkali-activated Portland cement with adjustable proper deformations for anchoring application. IOP Conference Series: Materials Science and Engineering, 708, 012090. doi: https://doi.org/10.1088/1757-899x/708/1/012090
  24. Krivenko, P. V., Petropavlovskyi, O. M., Rudenko, I. I., Konstantynovskyi, O. P., Kovalchuk, A. V. (2020). Complex multifunctional additive for anchoring grout based on alkali-activated portland cement. IOP Conference Series: Materials Science and Engineering, 907, 012055. doi: https://doi.org/10.1088/1757-899x/907/1/012055
  25. Kropyvnytska, T. P., Kaminskyy, A. T., Semeniv, R. M., Chekaylo, M. V. (2019). The effect of sodium aluminate on the properties of the composite cements. IOP Conference Series: Materials Science and Engineering, 708, 012091. doi: https://doi.org/10.1088/1757-899x/708/1/012091
  26. Bai, Y., Collier, N. C., Milestone, N. B., Yang, C. H. (2011). The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals. Journal of Nuclear Materials, 413 (3), 183–192. doi: https://doi.org/10.1016/j.jnucmat.2011.04.011
  27. Bernal, S. A. (2016). Advances in near-neutral salts activation of blast furnace slags. RILEM Technical Letters, 1, 39. doi: https://doi.org/10.21809/rilemtechlett.v1.8
  28. Mobasher, N., Bernal, S. A., Hussain, O. H., Apperley, D. C., Kinoshita, H., Provis, J. L. (2014). Characterisation of Ba(OH)2–Na2SO4–blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes. Cement and Concrete Research, 66, 64–74. doi: https://doi.org/10.1016/j.cemconres.2014.07.006
  29. Mobasher, N., Bernal, S. A., Provis, J. L. (2016). Structural evolution of an alkali sulfate activated slag cement. Journal of Nuclear Materials, 468, 97–104. doi: https://doi.org/10.1016/j.jnucmat.2015.11.016
  30. Krivenko, P., Sanytsky, M., Kropyvnytska, T. (2018). Alkali-Sulfate Activated Blended Portland Cements. Solid State Phenomena, 276, 9–14. doi: https://doi.org/10.4028/www.scientific.net/ssp.276.9
  31. Bilek, V., Kalina, L., Simonova, H. (2019). Effect of curing environment on length changes of alkali-activated slag/cement kiln by-pass dust mixtures. IOP Conference Series: Materials Science and Engineering, 583, 012017. doi: https://doi.org/10.1088/1757-899x/583/1/012017
  32. Maslehuddin, M., Al-Amoudi, O. S. B., Shameem, M., Rehman, M. K., Ibrahim, M. (2008). Usage of cement kiln dust in cement products – Research review and preliminary investigations. Construction and Building Materials, 22 (12), 2369–2375. doi: https://doi.org/10.1016/j.conbuildmat.2007.09.005
  33. Bílek Jr., V., Kalina, L., Bartoníčková, E., Opravil, T. (2014). Influence of Industrial By-Products on Shrinkage of Alkali-Activated Slag. Advanced Materials Research, 1000, 137–140. doi: https://doi.org/10.4028/www.scientific.net/amr.1000.137
  34. Krivenko, P. V., Petropavlovskyi, O., Rudenko, I., Konstantynovskyi, O. P. (2019). The Influence of Complex Additive on Strength and Proper Deformations of Alkali-Activated Slag Cements. Materials Science Forum, 968, 13–19. doi: https://doi.org/10.4028/www.scientific.net/msf.968.13
  35. Collier, N. C., Li, X., Bai, Y., Milestone, N. B. (2015). The effect of sulfate activation on the early age hydration of BFS:PC composite cement. Journal of Nuclear Materials, 464, 128–134. doi: https://doi.org/10.1016/j.jnucmat.2015.04.044
  36. Aliabdo, A. A., Abd Elmoaty, A. E. M., Emam, M. A. (2019). Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete. Construction and Building Materials, 197, 339–355. doi: https://doi.org/10.1016/j.conbuildmat.2018.11.086
  37. Bílek Jr., V., Pařízek, L., Kosár, P., Kratochvíl, J., Kalina, L. (2016). Strength and Porosity of Materials on the Basis of Blast Furnace Slag Activated by Liquid Sodium Silicate. Materials Science Forum, 851, 45–50. doi: https://doi.org/10.4028/www.scientific.net/msf.851.45
  38. Criado, M. (2015). The corrosion behaviour of reinforced steel embedded in alkali-activated mortar. Handbook of Alkali-Activated Cements, Mortars and Concretes, 333–372. doi: https://doi.org/10.1533/9781782422884.3.333
  39. Buchwald, A., Schulz, M. (2005). Alkali-activated binders by use of industrial by-products. Cement and Concrete Research, 35 (5), 968–973. doi: https://doi.org/10.1016/j.cemconres.2004.06.019
  40. Bernal, S. A., Ke, X., Provis, J. L. (2015). Activation of slags using near-neutral salts: The importance of the slag chemistry. 14th International Congress on Chemistry of Cement. Beijing.
  41. Krivenko, P., Gots, V., Petropavlovskyi, O., Rudenko, I., Konstantynovskyi, O., Kovalchuk, A. (2019). Development of solutions concerning regulation of proper deformations in alkali-activated cements. Eastern-European Journal of Enterprise Technologies, 5 (6 (101)), 24–32. doi: https://doi.org/10.15587/1729-4061.2019.181150
  42. Rashad, A. M., Bai, Y., Basheer, P. A. M., Milestone, N. B., Collier, N. C. (2013). Hydration and properties of sodium sulfate activated slag. Cement and Concrete Composites, 37, 20–29. doi: https://doi.org/10.1016/j.cemconcomp.2012.12.010
  43. Wu, P., Wang, J., Lian, M., Lyu, X. (2019). Preparation of slag based cementitious material and its application in the cementation of tailings. In IMPC 2018 - 29th International Mineral Processing Congress, 3122–3137.
  44. Rashad, A. M., Bai, Y., Basheer, P. A. M., Collier, N. C., Milestone, N. B. (2012). Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cement and Concrete Research, 42 (2), 333–343. doi: https://doi.org/10.1016/j.cemconres.2011.10.007
  45. Mobasher, N., Kinoshita, H., Bernal, S. A., Sharrard, C. A. (2014). Ba(OH)2– blast furnace slag composite binders for encapsulation of sulphate bearing nuclear waste. Advances in Applied Ceramics, 113 (8), 460–465. doi: https://doi.org/10.1179/1743676114y.0000000148
  46. Omelchuk, V., Ye, G., Runova, R., Rudenko, I. I. (2018). Shrinkage Behavior of Alkali-Activated Slag Cement Pastes. Key Engineering Materials, 761, 45–48. doi: https://doi.org/10.4028/www.scientific.net/kem.761.45
  47. Khan, M. S. H., Kayali, O. (2016). Chloride binding ability and the onset corrosion threat on alkali-activated GGBFS and binary blend pastes. European Journal of Environmental and Civil Engineering, 22 (8), 1023–1039. doi: https://doi.org/10.1080/19648189.2016.1230522
  48. Maes, M., Gruyaert, E., De Belie, N. (2012). Resistance of concrete with blast-furnace slag against chlorides, investigated by comparing chloride profiles after migration and diffusion. Materials and Structures, 46 (1-2), 89–103. doi: https://doi.org/10.1617/s11527-012-9885-3
  49. De Weerdt, K., Orsáková, D., Geiker, M. R. (2014). The impact of sulphate and magnesium on chloride binding in Portland cement paste. Cement and Concrete Research, 65, 30–40. doi: https://doi.org/10.1016/j.cemconres.2014.07.007
  50. Clark, B. A., Brown, P. W. (2000). The formation of calcium sulfoaluminate hydrate compounds: Part II. Cement and Concrete Research, 30 (2), 233–240. doi: https://doi.org/10.1016/s0008-8846(99)00234-3
  51. Runci, A., Serdar, M., Provis, J. (2019). Chloride-induced corrosion of steel embedded in alkali-activated materials: state of the art. 5th Symposium on Doctoral Studies in Civil Engineering, 175–185. doi: https://doi.org/10.5592/co/phdsym.2019.15
  52. Ye, H., Huang, L., Chen, Z. (2019). Influence of activator composition on the chloride binding capacity of alkali-activated slag. Cement and Concrete Composites, 104, 103368. doi: https://doi.org/10.1016/j.cemconcomp.2019.103368
  53. Honorio, T., Guerra, P., Bourdot, A. (2020). Molecular simulation of the structure and elastic properties of ettringite and monosulfoaluminate. Cement and Concrete Research, 135, 106126. doi: https://doi.org/10.1016/j.cemconres.2020.106126
  54. Baquerizo, L. G., Matschei, T., Scrivener, K. L., Saeidpour, M., Wadsö, L. (2015). Hydration states of AFm cement phases. Cement and Concrete Research, 73, 143–157. doi: https://doi.org/10.1016/j.cemconres.2015.02.011
  55. Plugin, A. A., Borziak, O. S., Pluhin, O. A., Kostuk, T. A., Plugin, D. A. (2020). Hydration Products that Provide Water-Repellency for Portland Cement-Based Waterproofing Compositions and Their Identification by Physical and Chemical Methods. Proceedings of EcoComfort 2020. Lecture Notes in Civil Engineering, 328–335. doi: https://doi.org/10.1007/978-3-030-57340-9_40
  56. Babaee, M., Castel, A. (2018). Chloride diffusivity, chloride threshold, and corrosion initiation in reinforced alkali-activated mortars: Role of calcium, alkali, and silicate content. Cement and Concrete Research, 111, 56–71. doi: https://doi.org/10.1016/j.cemconres.2018.06.009
  57. Mesbah, A., Cau-dit-Coumes, C., Frizon, F., Leroux, F., Ravaux, J., Renaudin, G. (2011). A New Investigation of the Cl−-CO32− Substitution in AFm Phases. Journal of the American Ceramic Society, 94 (6), 1901–1910. doi: https://doi.org/10.1111/j.1551-2916.2010.04305.x
  58. Geng, J., Yang, H., Mo, L. (2015). Effect of attack of sodium sulfate solution on the stability of bounded chloride ions. Jianzhu Cailiao Xuebao/Journal of Building Materials, 18 (6), 919–925. doi: https://doi.org/10.3969/j.issn.1007-9629.2015.06.001
  59. Park, J. W., Ann, K. Y., Cho, C.-G. (2015). Resistance of Alkali-Activated Slag Concrete to Chloride-Induced Corrosion. Advances in Materials Science and Engineering, 2015, 1–7. doi: https://doi.org/10.1155/2015/273101
  60. Pushkareva, K. K., Gonchar, O. A., Kaverin, K. O. (2019). The role of the crystallo-chemical factor in the evaluation and improvement of the nanomodification efficiency of mortar and concrete. IOP Conference Series: Materials Science and Engineering, 708, 012102. doi: https://doi.org/10.1088/1757-899x/708/1/012102
  61. Vollpracht, A., Lothenbach, B., Snellings, R., Haufe, J. (2015). The pore solution of blended cements: a review. Materials and Structures, 49 (8), 3341–3367. doi: https://doi.org/10.1617/s11527-015-0724-1
  62. Krivenko, P. V., Guzii, S. G., Bondarenko, O. P. (2019). Alkaline Aluminosilicate Binder-Based Adhesives with Increased Fire Resistance for Structural Timber Elements. Key Engineering Materials, 808, 172–176. doi: https://doi.org/10.4028/www.scientific.net/kem.808.172
  63. Tsapko, Y., Zavialov, D., Bondarenko, O., Marchenco, N., Mazurchuk, S., Horbachova, O. (2019). Determination of thermal and physical characteristics of dead pine wood thermal insulation products. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 37–43. doi: https://doi.org/10.15587/1729-4061.2019.175346
  64. Tsapko, Y., Bondarenko, O. P., Tsapko, A. (2019). Research of the Efficiency of the Fire Fighting Roof Composition for Cane. Materials Science Forum, 968, 61–67. doi: https://doi.org/10.4028/www.scientific.net/msf.968.61
  65. Plugin, A. A., Pluhin, O. A., Borziak, O. S., Kaliuzhna, O. V. (2019). The Mechanism of a Penetrative Action for Portland Cement-Based Waterproofing Compositions. Lecture Notes in Civil Engineering, 34–41. doi: https://doi.org/10.1007/978-3-030-27011-7_5
  66. Krivenko, P., Gots, V., Runova, R., Rudenko, I., Lastivka, O. (2013). Features of Alkali-Activated Slag Portland Cement. 1st Intern. Conf. on the Chemistry of Construction Materials. Berlin, 453–456.

Downloads

Published

2020-12-31

How to Cite

Kryvenko, P., Rudenko, I., & Konstantynovskyi, O. (2020). Design of slag cement, activated by Na (K) salts of strong acids, for concrete reinforced with steel fittings. Eastern-European Journal of Enterprise Technologies, 6(6 (108), 26–40. https://doi.org/10.15587/1729-4061.2020.217002

Issue

Section

Technology organic and inorganic substances