Effect of electromagnetic irradiation of emmer wheat grain on the yield of flattened wholegrain cereal

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.217018

Keywords:

electromagnetic field, water-heat treatment, emmer wheat, flattened cereal, cereal yield

Abstract

The effect of water-heat treatment and time of electromagnetic irradiation on the yield and quality of flattened wholegrain cereal from emmer wheat is investigated. A comparative analysis of cereal yield and cooking time at different moisture contents and time of electromagnetic irradiation of grain before flattening is carried out. The degree of influence of the investigated factors on the total yield of flattened wholegrain cereal and high-grade flattened cereal is determined.

The effect of electromagnetic irradiation on the yield of high-grade flattened cereal is significant. Moistening does not affect the overall cereal yield. The highest total yield of cereal was obtained after grain irradiation for 20–80 s, and the lowest – after 180 s. The highest yield of high-grade flattened cereal was obtained with an irradiation time of 80–100 s, while the lowest – 20 s.

Moistening of emmer wheat grain by 1.0 % allows increasing the yield of high-grade flattened cereal from 89.6 to 92.3 %. In this case, the optimal irradiation time is reduced from 100 to 80 s.

It is found that emmer wheat grain cereal is of high culinary quality. The cooking time of high-grade cereal is reduced as a result of moistening and electromagnetic irradiation of grain. With short-term electromagnetic irradiation of grain (20 s), the cooking time of high-grade cereal is 19.1 minutes, and after long-term (180 s) it decreased to 15.9 minutes.

The use of optimal processing parameters (moistening by 1.0 %, irradiation for 80–100 s) provides the 91.7–92.3 % yield of high-grade wholegrain flattened cereal with a culinary score of 7.3 points. The cereal quality meets the requirements of DSTU 76992015. The difference from the classical method is the use of unhulled emmer wheat grain. The developed recommendations can be used by enterprises to intensify production

Author Biographies

Nina Osokina, Uman National University of Horticulture Institutska str., 1, Uman, Ukraine, 20305

Doctor of Agricultural Sciences, Professor

Department of Technology of Storage and Processing of Grain

Vitalii Liubych, Uman National University of Horticulture Instytutska str., 1, Uman, Ukraine, 20305

Doctor of Agricultural Sciences, Professor

Department of Technology of Storage and Processing of Grain

Novikov Volodymyr, Uman National University of Horticulture Institutska str., 1, Uman, Ukraine, 20305

PhD, Senior Lecturer

Department of Technology of Storage and Processing of Grain

Ivan Leshchenko, Uman National University of Horticulture Institutska str., 1, Uman, Ukraine, 20305

Postgraduate Student

Department of Technology of Storage and Processing of Grain

Vasyl Petrenko, Institute of Food Resources National Academy of Agrarian Sciences Eugene Sverstyuk str., 4a, Kyiv, Ukraine, 02002

PhD

Laboratory of Grain Milling and Bakery Technology

Svitlana Khomenko, The V. M. Remeslo Myronivka Institute of Wheat of National Academy of Agrarian Sciences of Ukraine Tsentralna str., 68, Tsentralne village, Kyiv region, Ukraine, 08853

Doctor of Agricultural Sciences, Senior Researcher, Head of Laboratory

Spring Wheat Breeding laboratory

Viktor Zorunko, Odessa State Agricultural Experiment Station National Academy of Agrarian Sciences Maiakskaia doroha, 24, Khlebodarske, Odessa region, Ukraine, 67667

PhD, Associate Professor

Department of Plant Protection, Genetics and Breeding

Oleksandr Balabak, The National Dendrological Park "Sofiyivka" National Academy of Sciences of Ukraine Kievska str., 12A, Uman, Ukraine, 20300

PhD, Senior Scientist

Department of Genetics, Selection and Reproductive Biology of Plants

Valentyn Moskalets, Institute of Horticulture of the National Academy of Agrarian Sciences Sadova str., 23, Novosilky, Kyiv region, Ukraine, 03027

Doctor of Agricultural Sciences, Senior Researcher

Selection and Technological Department

Tatiana Moskalets, Institute of Horticulture of the National Academy of Agrarian Sciences Sadova str., 23, Novosilky, Kyiv region, Ukraine, 03027

Doctor of Biological Sciences, Associate Professor

Selection and Technological Department

References

  1. Caballerol, M. L. M., Alvarez, J. B. (2012). Collection and characterisation of populations of spelt and emmer in Asturias (Spain). Czech Journal of Genetics and Plant Breeding, 41 (Special Issue), 175–178. doi: http://doi.org/10.17221/6162-cjgpb
  2. Konvalina, P., Capouchová, I., Stehno, Z., Moudrý, J. (2010). Agronomic characteristics of the spring forms of the wheat landraces (einkorn, emmer, spelt, intermediate bread wheat) grown in organic farming. Journal of Agrobiology, 27 (1), 9–17. doi: http://doi.org/10.2478/s10146-009-0002-3
  3. Laghetti, G., Fiorentino, G., Hammer, K., Pignone, D. (2009). On the trail of the last autochthonous Italian einkorn (Triticum monococcum L.) and emmer (Triticum dicoccon Schrank) populations: a mission impossible? Genetic Resources and Crop Evolution, 56 (8), 1163–1170. doi: http://doi.org/10.1007/s10722-009-9439-x
  4. Mitrofanova, O. P., Khakimova, A. G. (2016). New genetic resources in wheat breeding for an increased grain protein content. Vavilov Journal of Genetics and Breeding, 20 (4), 545–554. doi: http://doi.org/10.18699/vj16.177
  5. Desheva, G. N., Kyosev, B. N., Stoyanova, S. D., Sabeva, M. D. (2016). Grain quality of emmer germplasm (Triticum dicoccon) from the National Collection of Bulgaria. Phytologia balcanica, 22 (2), 223–232.
  6. Lacko-Bartošová, M., Čurná, V., Lacko-Bartošová, L. (2015). Emmer – ancient wheat suitable for ecological farming. Research Journal of Agricultural Science, 47 (1), 3–10.
  7. Stehno, Z., Paulíčková, I., Bradová, J., Konvalina, P., Capouchová, I., Mašková, E. et. al. (2011). Evaluation of emmer wheat genetic resources aimed at dietary food production. Journal of Life Sciences, 5, 207–212.
  8. Lacko-Bartošová, M., Čurná, V. (2015). Nutritional characteristics of emmer wheat varieties. Journal of Microbiology, Biotechnology and Food Sciences, 4 (Special issue 3), 95–98. doi: http://doi.org/10.15414/jmbfs.2015.4.special3.95-98
  9. Ruzhitska, O. M., Borysova, O. V. (2018). Seed productivity and biochemical composition of spelt winter wheat and emmer wheat under south steppe zone conditions. Plant physiology and genetics, 50 (2), 161–169.
  10. Chugunova, O. V., Kryukova, E. V. (2015). Agronomic properties of spelt as unconventional raw materials for production of flour confectionery products. Science Bulletin, 5 (3), 90–100. doi: http://doi.org/10.17117/nv.2015.03.090
  11. Čurná, V., Lacko-Bartošová, M. (2017). Chemical composition and nutritional value of emmer wheat (Triticum dicoccon Schrank): a review. Journal of Central European Agriculture, 18 (1), 117–134. doi: http://doi.org/10.5513/jcea01/18.1.1871
  12. Shewry, P. R., Hey, S. J. (2015). The contribution of wheat to human diet and health. Food and Energy Security, 4 (3), 178–202. doi: http://doi.org/10.1002/fes3.64
  13. Zaharieva, M., Ayana, N. G., Hakimi, A. A., Misra, S. C., Monneveux, P. (2010). Cultivated emmer wheat (Triticum dicoccon Schrank), an old crop with promising future: a review. Genetic Resources and Crop Evolution, 57 (6), 937–962. doi: http://doi.org/10.1007/s10722-010-9572-6
  14. Dhanavath, S., Prasada Rao, U. J. S. (2017). Nutritional and Nutraceutical Properties ofTriticum dicoccumWheat and Its Health Benefits: An Overview. Journal of Food Science, 82 (10), 2243–2250. doi: http://doi.org/10.1111/1750-3841.13844
  15. Vecherska, L. A., Relina, L. I., Golik, O. V. (2018). Emmer: benefits, drawbacks and prospects. Bulletin of Uman National University of Horticulture, 2, 10–16. doi: http://doi.org/10.31395/2310-0478-2018-21-10-16
  16. Ragaee, S., Seetharaman, K., Abdel-Aal, E.-S. M. (2014). The Impact of Milling and Thermal Processing on Phenolic Compounds in Cereal Grains. Critical Reviews in Food Science and Nutrition, 54 (7), 837–849. doi: http://doi.org/10.1080/10408398.2011.610906
  17. Kirilenko, N. A., Ruzhitska, O. M., Borisova, O. V. (2016). Anatomical and morphological features of stems and leaves of filmy types of triticum spelta L. and T. dicoccum (Schrank) Schuebl. Odesa National University Herald. Biology, 21 (1 (38)), 50–61. doi: http://doi.org/10.18524/2077-1746.2016.1(38).68615
  18. Konvalina, P., Capouchová, I., Stehno, Z., Moudrý, J., Moudrý, J. Jr., Márton, L. (2011). Variation for carbon isotope ratio in a set of emmer (Triticum dicoccum Schrank) and bread wheat (Triticum aestivum L.) accessions. African Journal of Biotechnology, 10 (21), 4450–4456.
  19. Babenko, L. M., Rozhkov, R. V., Pariy, Y. F., Pariy, M. F., Kosakisvska, I. V., Vodka, M. V. (2017). Triticum dicoccum (Schrank) Schuebl.: origin, biological characteristics and perspectives of use in breeding and agriculture. Vìsnik Harkìvsʹkogo Nacìonalʹnogo Agrarnogo Unìversitetu. Serìâ Bìologiâ, 2 (41), 92–102. doi: http://doi.org/10.35550/vbio2017.02.092
  20. Liubych, V., Novikov, V., Zheliezna, V., Prykhodko, V., Petrenko, V., Khomenko, S. et. al. (2020). Improving the process of hydrothermal treatment and dehulling of different triticale grain fractions in the production of groats. Eastern-European Journal of Enterprise Technologies, 3 (11 (105)), 55–65. doi: http://doi.org/10.15587/1729-4061.2020.203737
  21. Gospodarenko, G. M., Martyniuk, A. T., Lyubich, V. V., Polyanetska, I. O. (2017). Cereal properties of grain of different grades and lines of spelled wheat. Bulletin of Dnipropetrovsk State Agrarian and Economic University, 1 (43), 12–16.
  22. Liubych, V., Novikov, V., Polianetska, I., Usyk, S., Petrenko, V., Khomenko, S. et. al. (2019). Improvement of the process of hydrothermal treatment and peeling of spelt wheat grain during cereal production. Eastern-European Journal of Enterprise Technologies, 3 (11 (99)), 40–51. doi: http://doi.org/10.15587/1729-4061.2019.170297
  23. Hospodarenko, G. M., Poltoretskyi, S. P., Liubych, V. V., Zheliezna, V. V. (2018). Improvement of the parcooking mode for the rolled groats production of spelt wheat. Collected Works of Uman National University of Horticulture, 93 (1), 8–22. doi: http://doi.org/10.31395/2415-8240-2018-93-1-8-22
  24. Osokina, N. M., Liubych, V. V., Novikov, V. V., Leshchenko, I. A. (2020). Yield of spelt wheat rolled grits depending on exposure time to microwave EMF (electromagnetic field of high-frequency current) and water treatment. Collected Works of Uman National University of Horticulture, 1 (96), 52–71. doi: http://doi.org/10.31395/2415-8240-2020-96-1-52-71
  25. Kil, Y., Joy, C., Silva Clerici, M. T. P. (2011). The Use of Microwave Radiation Energy to Process Cereal, Root and Tuber-based Products. Advances in Induction and Microwave Heating of Mineral and Organic Materials, 531–552. doi: http://doi.org/10.5772/14177
  26. Lucas, J. (2018). Microwave Radiation. CIRP Encyclopedia of Production Engineering, 1–6. doi: http://doi.org/10.1007/978-3-642-35950-7_6488-4
  27. Neill, G., Al-Muhtaseb, A. H., Magee, T. R. A. (2012). Optimisation of time/temperature treatment, for heat treated soft wheat flour. Journal of Food Engineering, 113 (3), 422–426. doi: http://doi.org/10.1016/j.jfoodeng.2012.06.019
  28. Lamacchia, C., Landriscina, L., D’Agnello, P. (2016). Changes in wheat kernel proteins induced by microwave treatment. Food Chemistry, 197, 634–640. doi: http://doi.org/10.1016/j.foodchem.2015.11.016
  29. Qu, C., Wang, H., Liu, S., Wang, F., Liu, C. (2017). Effects of microwave heating of wheat on its functional properties and accelerated storage. Journal of Food Science and Technology, 54 (11), 3699–3706. doi: http://doi.org/10.1007/s13197-017-2834-y
  30. Furmanova, Y. P. (2012). Buckwheat Product Technology. Kyiv, 22.
  31. Mazima, J. K., Johnson, A., Manasseh, E., Kaijage, S. (2018). An overview of electromagnetic radiation in grain crops. Food Science and Technology: An International Journal, 1 (1), 21–32.
  32. Diraman, H. (2010). Effect of Microwaves on Technological and Rheological Properties of Suni-Bug (Eurygaster spp) Damaged and Undamaged Wheat Flour. Food Science and Technology Research, 16 (4), 313–318. doi: http://doi.org/10.3136/fstr.16.313
  33. Kroshko, H. D., Levchenko, V. I., Nazarenko, L. N. ta in. (1998). Pravyla orhanizatsii i vedennia tekhnolohichnoho protsesu na krupianykh zavodakh. Kyiv: Viola, 163.
  34. Litun, P. P., Kyrychenko, V. V., Petrenkova, V. P., Kolomatska, V. P. (2009). Systematychnyi analiz v selektsii polovykh kultur. Kharkiv, 354.
  35. Tsarenko, O. M., Zlobin, V. H., Skliar, Yu. A., Panchenko, S. M. (2000). Computer methods in agriculture and biology. Sumy: TOV «Elita-Star», 203.
  36. Liubych, V. V., Novikov, V. V., Leshchenko, I. A. (2019). Influence of the duration of dehusking and water heat treatment grain obtaining and culinary evaluation of wheat rolled cereal emmer. Scientific Notes of Taurida National V. I. Vernadsky University. Series: Technical Sciences, 30 (6 (69)), 107–111. doi: http://doi.org/10.32838/2663-5941/2019.6-2/19
  37. Petrenko, V., Liubich, V., Bondar, V. (2017). Baking quality of wheat grain as influenced by agriculture systems, weather and storing conditions. Romanian Agricultural Research, 34, 69–76. Available at: https://www.cabdirect.org/cabdirect/abstract/20183008263
  38. Kiseleva, M. I., Kolomiets, T. M., Pakholkova, E. V., Zhemchuzhina, N. S., Lubich, V. V. (2016). The differentiation of winter wheat (Triticum aestivum l.) cultivars for resistance to the most harmful fungal pathogens. Sel’skokhozyaistvennaya Biologiya, 51 (3), 299–309. doi: http://doi.org/10.15389/agrobiology.2016.3.299eng

Downloads

Published

2020-12-31

How to Cite

Osokina, N., Liubych, V., Volodymyr, N., Leshchenko, I., Petrenko, V., Khomenko, S., Zorunko, V., Balabak, O., Moskalets, V., & Moskalets, T. (2020). Effect of electromagnetic irradiation of emmer wheat grain on the yield of flattened wholegrain cereal. Eastern-European Journal of Enterprise Technologies, 6(11 (108), 17–26. https://doi.org/10.15587/1729-4061.2020.217018

Issue

Section

Technology and Equipment of Food Production