Development of cobalt-free oxide (Sm0.5Sr0.5Fe0.8Cr0.2O3-δ) cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs)

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.217282

Keywords:

solid oxide fuel cells, cobalt-free cathode, perovskite structure, oxygen content, conductivity

Abstract

A cobalt-free perovskite oxide Sm0.5Sr0.5Fe0.8Cr0.2O3-δ (SSFC) has been exploited as a novel cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The cathode model was synthesized with the addition of the chromium element in the B side of the composite metallic oxide system, which was then formed by the solid-state reaction method. The model system was further characterized in detail for getting the properties behavior. The solid-state reaction of the SSFC system was observed through thermal gravimetric analysis. Meanwhile, the structural properties were investigated by x-ray diffraction, and the weight loss was examined by the thermal gravimetric analysis as well. Furthermore, the thermal expansion coefficient was determined by the thermal-mechanical analysis, and the conductivity properties were tested by the thermal conductivity analysis. The result showed that the SSFC cathode demonstrated the crystalline structure based on the design with a perovskite phase. The oxygen content created on the model structure was obtained to be 2.98 after the calcination process. The average thermal expansion coefficient was achieved up to 5.0×10-6 K-1 as the heating given up to 800 °С. Moreover, the conductivity value reached from 2 S∙cm-1 at 400 °С and it increased to be a maximum of 7.5 S∙cm-1 at 700 °С. In addition, the presence of Cr6+ cation valence coordinated with the oxygen anion could lead to generating a large concentration of oxygen vacancies on the cathode surface, facilitating the transport of the O2− anion in the cathode system. Based on these results, the SSFC cathode has good properties as a composite system promising for IT-SOFCs application in the future

Author Biographies

Iwan Susanto, Politeknik Negeri Jakarta Kukusan, Beji, Depok, Indonesia, 16425

Doctor of Materials Science and Engineering, Assistance Professor

Department of Mechanical Engineering

Dianta Mustofa Kamal, Politeknik Negeri Jakarta Kukusan, Beji, Depok, Indonesia, 16425

Doctor of Energy Conversion, Assistance Professor

Department of Mechanical Engineering

Sidiq Ruswanto, Politeknik Negeri Jakarta Kukusan, Beji, Depok, Indonesia, 16425

Master of Materials Science and Engineering

Department of Mechanical Engineering

Rahmat Subarkah, Politeknik Negeri Jakarta Kukusan, Beji, Depok, Indonesia, 16425

Master of Thermo Fluids Engineering, Assistance Professor

Department of Mechanical Engineering

Fuad Zainuri, Politeknik Negeri Jakarta Kukusan, Beji, Depok, Indonesia, 16425

Doctoral Candidate of Mechanical Engineering, Assistance Professor

Department of Mechanical Engineering

Sulaksana Permana, Universitas Indonesia Depok, Jawa Barat, Indonesia, 16424

Doctor of Engineering in Metallurgy and Materials

Centre of Mineral Processing and Corrosion Research

Department of Metallurgy and Materials

Johny Wahyuadi Soedarsono, Universitas Indonesia Depok, Jawa Barat, Indonesia, 16424

Doctor of Engineering, Professor

Centre of Mineral Processing and Corrosion Research

Department of Metallurgy and Materials

Adi Subardi, Institut Teknologi Nasional Yogyakarta Jl. Babarsari, Tambak Bayan, Caturtunggal, Kec. Depok, Kabupaten Sleman, Daerah Istimewa Yogyakarta, Indonesia, 55281

Doctor of Materials Science and Engineering, Assistance Professor

Department of Mechanical Engineering

Yen-Pei Fu, National Dong Hwa University Shoufeng Township, Hualien, Taiwan, 974301

Doctor of Materials, Professor

Department of Materials Science and Engineering

References

  1. Wakui, T., Yokoyama, R., Shimizu, K. (2010). Suitable operational strategy for power interchange operation using multiple residential SOFC (solid oxide fuel cell) cogeneration systems. Energy, 35 (2), 740–750. doi: https://doi.org/10.1016/j.energy.2009.09.029
  2. Fernandes, A., Woudstra, T., van Wijk, A., Verhoef, L., Aravind, P. V. (2016). Fuel cell electric vehicle as a power plant and SOFC as a natural gas reformer: An exergy analysis of different system designs. Applied Energy, 173, 13–28. doi: https://doi.org/10.1016/j.apenergy.2016.03.107
  3. Naimaster, E. J., Sleiti, A. K. (2013). Potential of SOFC CHP systems for energy-efficient commercial buildings. Energy and Buildings, 61, 153–160. doi: https://doi.org/10.1016/j.enbuild.2012.09.045
  4. Song, X., Le, S., Zhu, X., Qin, L., Luo, Y., Li, Y. et. al. (2017). High performance BaFe1−xBixO3−δ as cobalt-free cathodes for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 42 (24), 15808–15817. doi: https://doi.org/10.1016/j.ijhydene.2017.05.061
  5. Zhu, M., Cai, Z., Xia, T., Li, Q., Huo, L., Zhao, H. (2016). Cobalt-free perovskite BaFe0.85Cu0.15O3-δ cathode material for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 41 (8), 4784–4791. doi: https://doi.org/10.1016/j.ijhydene.2016.01.071
  6. Yao, C., Zhang, H., Liu, X., Meng, J., Meng, J., Meng, F. (2019). A niobium and tungsten co-doped SrFeO3- perovskite as cathode for intermediate temperature solid oxide fuel cells. Ceramics International, 45 (6), 7351–7358. doi: https://doi.org/10.1016/j.ceramint.2019.01.019
  7. Yang, H., Gu, Y., Zhang, Y., Zheng, Y., Zhang, Z., Ge, L. et. al. (2019). Sr-substituted SmBa0.75Ca0.25CoFeO5+ as a cathode for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 770, 616–624. doi: https://doi.org/10.1016/j.jallcom.2018.08.143
  8. Liu, H., Zhu, K., Liu, Y., Li, W., Cai, L., Zhu, X. et. al. (2018). Structure and electrochemical properties of cobalt-free perovskite cathode materials for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 279, 224–230. doi: https://doi.org/10.1016/j.electacta.2018.05.086
  9. Subardi, A., Chen, C.-C., Cheng, M.-H., Chang, W.-K., Fu, Y.-P. (2016). Electrical, thermal and electrochemical properties of SmBa1−xSrxCo2O5+δ cathode materials for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 204, 118–127. doi: https://doi.org/10.1016/j.electacta.2016.04.069
  10. Zhao, L., He, B., Zhang, X., Peng, R., Meng, G., Liu, X. (2010). Electrochemical performance of novel cobalt-free oxide Ba0.5Sr0.5Fe0.8Cu0.2O3−δ for solid oxide fuel cell cathode. Journal of Power Sources, 195 (7), 1859–1861. doi: https://doi.org/10.1016/j.jpowsour.2009.09.078
  11. Li, C.-H., Hu, S.-H., Tay, K.-W., Fu, Y.-P. (2012). Electrochemical characterization of gradient Sm0.5Sr0.5CoO3−δ cathodes on Ce0.8Sm0.2O1.9 electrolytes for solid oxide fuel cells. Ceramics International, 38 (2), 1557–1562. doi: https://doi.org/10.1016/j.ceramint.2011.09.041
  12. Javed, M. S., Shaheen, N., Idrees, A., Hu, C., Raza, R. (2017). Electrochemical investigations of cobalt-free perovskite cathode material for intermediate temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 42 (15), 10416–10422. doi: https://doi.org/10.1016/j.ijhydene.2017.02.045
  13. Ling, Y., Zhang, X., Wang, Z., Wang, S., Zhao, L., Liu, X., Lin, B. (2013). Potentiality of cobalt-free perovskite Ba0.5Sr0.5Fe0.9Mo0.1O3−δ as a single-phase cathode for intermediate-to-low-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 38 (33), 14323–14328. doi: https://doi.org/10.1016/j.ijhydene.2013.08.089
  14. Subardi, A., Liao, K.-Y., Fu, Y.-P. (2019). Oxygen transport, thermal and electrochemical properties of NdBa0.5Sr0.5Co2O5+δ cathode for SOFCs. Journal of the European Ceramic Society, 39 (1), 30–40. doi: https://doi.org/10.1016/j.jeurceramsoc.2018.01.022
  15. Baharuddin, N. A., Muchtar, A., Somalu, M. R. (2017). Short review on cobalt-free cathodes for solid oxide fuel cells. International Journal of Hydrogen Energy, 42 (14), 9149–9155. doi: https://doi.org/10.1016/j.ijhydene.2016.04.097
  16. Baharuddin, N. A., Muchtar, A., Somalu, M. R., Kalib, N. S., Raduwan, N. F. (2019). Synthesis and characterization of cobalt-free SrFe0·8Ti0·2O3-δ cathode powders synthesized through combustion method for solid oxide fuel cells. International Journal of Hydrogen Energy, 44 (58), 30682–30691. doi: https://doi.org/10.1016/j.ijhydene.2018.11.142
  17. Meng, X., Lü, S., Yu, W. W., Ji, Y., Sui, Y., Wei, M. (2018). Layered perovskite LnBa0.5Sr0.5Cu2O5+δ (Ln = Pr and Nd) as cobalt-free cathode materials for solid oxide fuel cells. International Journal of Hydrogen Energy, 43 (9), 4458–4470. doi: https://doi.org/10.1016/j.ijhydene.2018.01.033
  18. Ding, X., Gao, X., Zhu, W., Wang, J., Jiang, J. (2014). Electrode redox properties of Ba1−xLaxFeO3−δ as cobalt free cathode materials for intermediate-temperature SOFCs. International Journal of Hydrogen Energy, 39 (23), 12092–12100. doi: https://doi.org/10.1016/j.ijhydene.2014.06.009
  19. Yin, J.-W., Yin, Y.-M., Lu, J., Zhang, C., Minh, N. Q., Zhang, W., Ma, Z.-F. (2014). Nd 0.5 Sr 0.5 Fe 0.8 Cu 0.2 O 3−δ – x Sm 0.2 Ce 0.8 O 1.9 cobalt-free composite cathodes for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 39 (31), 17852–17856. doi: https://doi.org/10.1016/j.ijhydene.2014.08.131
  20. He, Z., Xia, L., Chen, Y., Yu, J., Huang, X., Yu, Y. (2015). Layered perovskite Sm1−xLaxBaFe2O5+δ as cobalt-free cathodes for IT-SOFCs. RSC Advances, 5 (71), 57592–57598. doi: https://doi.org/10.1039/c5ra09762b
  21. Baharuddin, N. A., Mohd Nazrul Aman, N. A., Muchtar, A., Somalu, M. R., Abdul Samat, A., Aznam, M. I. (2019). Structural, morphological, and electrochemical behavior of titanium-doped SrFe1-xTixO3-δ (x = 0.1–0.5) perovskite as a cobalt-free solid oxide fuel cell cathode. Ceramics International, 45 (10), 12903–12909. doi: https://doi.org/10.1016/j.ceramint.2019.03.216
  22. Cai, H., Zhang, L., Xu, J., Huang, J., Wei, X., Wang, L. et. al. (2019). Cobalt–free La0.5Sr0.5Fe0.9Mo0.1O3– electrode for symmetrical SOFC running on H2 and CO fuels. Electrochimica Acta, 320, 134642. doi: https://doi.org/10.1016/j.electacta.2019.134642
  23. Chen, M., Paulson, S., Kan, W. H., Thangadurai, V., Birss, V. (2015). Surface and bulk study of strontium-rich chromium ferrite oxide as a robust solid oxide fuel cell cathode. Journal of Materials Chemistry A, 3 (45), 22614–22626. doi: https://doi.org/10.1039/c5ta05815e
  24. Niu, Y., Lv, W., Chen, D., Han, J., He, W. (2019). A model study on correlation between microstructure-gas diffusion and Cr deposition in porous LSM/YSZ cathodes of solid oxide fuel cells. International Journal of Hydrogen Energy, 44 (33), 18319–18329. doi: https://doi.org/10.1016/j.ijhydene.2019.05.115
  25. Parveen, I. M., Asvini, V., Saravanan, G., Ravichandran, K., Kalaiselvi, D. (2019). Deficiency of O2 molecules enhances ionic conductivity in Cr-doped O-Ce-O for solid oxide fuel cell applications. Ceramics International, 45 (10), 13127–13137. doi: https://doi.org/10.1016/j.ceramint.2019.03.247
  26. Lu, J., Yin, Y.-M., Yin, J., Li, J., Zhao, J., Ma, Z.-F. (2015). Role of Cu and Sr in Improving the Electrochemical Performance of Cobalt-Free Pr1-xSrxFe1-yCuyO3-δCathode for Intermediate Temperature Solid Oxide Fuel Cells. Journal of The Electrochemical Society, 163 (2), F44–F53. doi: https://doi.org/10.1149/2.0181602jes
  27. Zhang, C., Zhao, H. (2012). A novel cobalt-free cathode material for proton-conducting solid oxide fuel cells. Journal of Materials Chemistry, 22 (35), 18387. doi: https://doi.org/10.1039/c2jm32627b
  28. Yin, J.-W., Yin, Y.-M., Lu, J., Zhang, C., Minh, N. Q., Ma, Z.-F. (2014). Structure and Properties of Novel Cobalt-Free Oxides NdxSr1–xFe0.8Cu0.2O3−δ (0.3 ≤ x ≤ 0.7) as Cathodes of Intermediate Temperature Solid Oxide Fuel Cells. The Journal of Physical Chemistry C, 118 (25), 13357–13368. doi: https://doi.org/10.1021/jp500371w
  29. Yin, S., Li, M., Zeng, Y., Li, C., Chen, X., Ye, Z. (2014). Study of Sm0.2Ce0.8O1.9 (SDC) electrolyte prepared by a simple modified solid-state method. Journal of Rare Earths, 32 (8), 767–771. doi: https://doi.org/10.1016/s1002-0721(14)60138-1
  30. Li, S., Lü, Z., Huang, X., Su, W. (2008). Thermal, electrical, and electrochemical properties of Nd-doped Ba0.5Sr0.5 Co0.8Fe0.2O3−δ as a cathode material for SOFC. Solid State Ionics, 178 (35-36), 1853–1858. doi: https://doi.org/10.1016/j.ssi.2007.11.016
  31. Chen, M., Paulson, S., Thangadurai, V., Birss, V. (2013). Sr-rich chromium ferrites as symmetrical solid oxide fuel cell electrodes. Journal of Power Sources, 236, 68–79. doi: https://doi.org/10.1016/j.jpowsour.2013.02.024

Downloads

Published

2020-12-31

How to Cite

Susanto, I., Kamal, D. M., Ruswanto, S., Subarkah, R., Zainuri, F., Permana, S., Soedarsono, J. W., Subardi, A., & Fu, Y.-P. (2020). Development of cobalt-free oxide (Sm0.5Sr0.5Fe0.8Cr0.2O3-δ) cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Eastern-European Journal of Enterprise Technologies, 6(5 (108), 15–20. https://doi.org/10.15587/1729-4061.2020.217282

Issue

Section

Applied physics