Comparative analysis of the fatigue contact strength of surfaces hardened by cementation and the ion-plasma nitriding Аvinit N

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.217674

Keywords:

friction, rolling with surface slipping, contact fatigue strength, gas cementation, plasma nitriding

Abstract

This paper reports comparative tribotechnical tests of surfaces, hardened by cementation and plasma nitriding Avinit N, for contact fatigue strength at friction in rolling with slipping. Following the cementation, the samples' hardened layer thickness was 1.2 mm; on nitriding, the thickness of the hardened layer was 0.25 mm. The tests were carried out using an acoustic emission method, which is extremely sensitive when registering the transition of tribosystems' operation from the normal (mechanochemical) wear to the initial surface destruction of a fatigue nature.

The tests have shown that the average number of cycles before the initial destruction due to fatigue for the samples hardened by the Avinit nitriding technology is 1.82-time higher compared to the cementation-hardened samples. The depth of damage at the surface of the cemented samples could vary between 0.01 and 0.027 mm depending on the diameter of the damage. For the nitrided surfaces, the depth of damage did not exceed 0.003 mm.

The samples' resistance to the fatigue wear (destruction) was determined by tests based on 1,000,000 cycles at contact loads σmax=1,140 MPa, typical of medium-loaded surfaces. The test results demonstrated that the integrated multicyclic resistance to fatigue wear (destruction) of the samples, hardened by nitriding, is more than 10 times higher than that of the cementation-hardened samples.

The study reported here confirms the effectiveness of using the Avinit ion-plasma nitriding technology instead of cementing, to improve the contact strength of the parts' surfaces. At the same time, worth noting are the advantages of this technology to maintain the size and high quality of surface treatment, which eliminates the need to mechanically finish them after hardening

Author Biographies

Alex Sagalovych, JSC «FED» Sumska str., 132, Kharkiv, Ukraine, 61023

Academician of Academy of Technological Sciences of Ukraine, Head of Department

Department of Special Technologies

Viktor Popov, JSC «FED» Sumska str., 132, Kharkiv, Ukraine, 61023

PhD, Academician of Academy of Technological Sciences of Ukraine, Chairman of the Management Board

Vladislav Sagalovуch, NTC «Nanotechnologie» Myru blvd., 3, Kharkiv, Ukraine, 61108

Doctor of Technical Sciences, Professor, Academician of Academy of Technological Sciences of Ukraine, Director

Stanislav Dudnik, JSC «FED» Sumska str., 132, Kharkiv, Ukraine, 61023

PhD, Head of Department

Department of Fine Technologies

Vladimir Bogoslavzev, JSC «FED» Sumska str., 132, Kharkiv, Ukraine, 61023

Lead Designer

Nik Stadnichenko, Ivan Kozhedub Kharkiv National Air Force University Sumska str., 77/79, Kharkiv, Ukraine, 61023

PhD, Associate Professor, Head of Laboratory

Andrey Edinovych, SE Ivchenko-Progress Ivanova str., 2, Zaporizhzhia, Ukraine, 69068

Lead Designer

References

  1. Fedorov, V. V. (1985). Kinetika povrezhdaemosti i razrusheniya materialov. Tashkent: FAN, 175.
  2. Ibatullin, I. D. (2008). Kinetika ustalostnoy povrezhdaemosti i razrusheniya poverhnostnyh sloev. Samara: Samar. gos. tehn. un-t, 387.
  3. Arzamasov, B. N., Bratuhin, A. G., Eliseev, Yu. S., Panayoti, T. A. (1999). Ionnaya himiko-termicheskaya obrabotka splavov. Moscow: Izd-vo MGTU im. N.E. Baumana, 400.
  4. Zinchenko, V. M., Syropyatov, V. Ya., Prusakov, B. A., Perekatov, Yu. A. (2003). Azotniy potentsial: sovremennoe sostoyanie problemy i kontseptsiya razvitiya. Moscow: FGUP «Izdatel'stvo «Mashinostroenie», 90.
  5. Kaplun, V. G., Kaplun, P. V. (2015). Ionnoe azotirovanie v bezvodorodnyh sredah. Hmel'nits'kiy: HNU, 318.
  6. Wu, Y. S., Ma, B. T., He(HO), J. W., Luo, B. Z. (1989). A criterion for contact fatigue of ion-nitrided gear. Wear, 129 (1), 13–21. doi: https://doi.org/10.1016/0043-1648(89)90275-5
  7. Boniardi, M., D’Errico, F., Tagliabue, C. (2006). Influence of carburizing and nitriding on failure of gears – A case study. Engineering Failure Analysis, 13 (3), 312–339. doi: https://doi.org/10.1016/j.engfailanal.2005.02.021
  8. Terent’ev, V. F., Мichugina, М. S., Kolmakov, A. G., Kvedaras, V., Čiuplys, V., Čiuplys, A., Vilys, J. (2007). The effect of nitriding on fatigue strength of structural alloys. MECHANIKA, 2 (64), 12–22.
  9. Gerasimov, S. A., Kuksenova, L. I., Alekseeva, M. S. (2017). Peculiarities of structure and tribological properties formation of the nitrided steel and alloy. Bulletin of Science and Technical Development, 7 (119), 3–17.
  10. Conrado, E., Gorla, C., Davoli, P., Boniardi, M. (2017). A comparison of bending fatigue strength of carburized and nitrided gears for industrial applications. Engineering Failure Analysis, 78, 41–54. doi: https://doi.org/10.1016/j.engfailanal.2017.03.006
  11. Kaplun, P. V., Gonchar, V. A. (2015). Effect on durability ion nitriding open gears. Problems of Tribology, 2, 84–89.
  12. Kaplun, P. V., Honchar, V. A., Donchennko, T. V., Matviichin, P. V. (2019). Nfluence of ionic nitriding and remainingaustenite on longevity permanent at friction woobling. Herald of Khmelnytskyi national university, 1, 122–129. Available at: http://elar.khnu.km.ua/jspui/handle/123456789/7581
  13. Shetty, K., Kumar, S., Raghothama Rao, P. (2009). Effect of ion nitriding on the microstructure and properties of Maraging steel (250 Grade). Surface and Coatings Technology, 203 (10-11), 1530–1536. doi: https://doi.org/10.1016/j.surfcoat.2008.11.034
  14. Sirin, S. Y., Sirin, K., Kaluc, E. (2008). Effect of the ion nitriding surface hardening process on fatigue behavior of AISI 4340 steel. Materials Characterization, 59 (4), 351–358. doi: https://doi.org/10.1016/j.matchar.2007.01.019
  15. Rolinski, E., Damirgi, T., Woods, M. S. (2015). Ion Nitriding of Ferrous and Titanium Alloys for Gear Applications. Thermal Processing, 36–40.
  16. Fomina, L. P, Krymov, V. V. (2016). Sovershenstvovanie tehnologiy uprochneniya zubchatyh koles aviadvigateley. Dvigatel', 2 (104), 6–8.
  17. Sahalovych, O. V., Sahalovych, V. V. (2013). Pat. No. 84664 UA. Sposib ionno-plazmovoho pretsyziynoho azotuvannia poverkhon stalei i splaviv Avinit N. No. u201305770; declareted: 16.08.2013; published: 25.10.2013, Bul. No. 23.
  18. Sahalovych, O. V., Sahalovych, V. V. (2013). Pat. No. 107408 UA. Sposib ionno-plazmovoho pretsyziynoho azotuvannia poverkhon detali zi stalei i splaviv avinit N. No. a201305768; declareted: 07.05.13; published: 25.12.2014, Bul. No. 24.
  19. Filonenko, S. F., Stadnichenko, V. N. (2007). Avtomatizatsiya issledovaniy protsessov samoorganizatsii tribosistem. Avtomatika. Avtomatizatsiya. Elektrotehnicheskie kompleksy i sistemy, 1 (18), 164–167.
  20. Stadnychenko, M. H., Dzhus, R. M., Troshyn, O. M. (2004). Pro hranytsi zastosuvannia metodu akustychnoi emisiyi pry vyrishenni zadach trybodiahnostyky. Zbirnyk naukovykh prats XI VPS, 1 (10), 187–195.

Downloads

Published

2020-12-31

How to Cite

Sagalovych, A., Popov, V., Sagalovуch V., Dudnik, S., Bogoslavzev, V., Stadnichenko, N., & Edinovych, A. (2020). Comparative analysis of the fatigue contact strength of surfaces hardened by cementation and the ion-plasma nitriding Аvinit N. Eastern-European Journal of Enterprise Technologies, 6(12 (108), 20–27. https://doi.org/10.15587/1729-4061.2020.217674

Issue

Section

Materials Science