Designing brazing filler metal for heat-resistant alloys based on NI3AL intermetallide

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.217819

Keywords:

brazed joints, microstructure of joints, chemical composition, short-term and long-lasting strength, brazing technology, tantalum, rhenium, boron

Abstract

One of the most promising structural materials in gas turbine engineering is the alloys based on an intermetallide, the type of Ni3Al, with an equiaxial and directional columnar structure. These materials make it possible to increase the working temperature of blades to 1,220 °C. The blades are made by the method of precise casting in a vacuum; in this case, it is necessary to technologically join the nozzle blades into blocks, to fix the signal holes in cooled blades, to correct casting defects.

Welding by melting intermetallide materials, as well as other cast heat-resistant nickel alloys (HNA), does not yield positive results. Therefore, various brazing techniques are used such as TLP-Bonding (Transient Liquid Phase Bonding). Filler metals' melting point is lower than that of the main metal. The key issue related to the technology of brazing HNA, including the design of appropriate filler metals, is the improvement of the physical-mechanical and operational properties of brazed joints.

This paper reports the established rational doping of a filler metal base, as well as depressants, the critical temperatures and surface properties of filler metals, their chemical composition, the structure and properties of brazed joints, the mode parameters, and brazing technology. To improve the stability of the structure and the high-temperature strength of the brazed joints, the filler metal was alloyed with rhenium and tantalum. Mechanical tests of brazed joints at 900 °C were conducted in Ukraine; at a temperature of 1,100 °C ‒ in the People's Republic of China. The test results showed that the short-term strength of alloy compounds with an equiaxial structure based on the Ni3Al-type intermetallide at 1,100 °C is 0.98 of the strength of the main metal. The long-lasting strength at the same temperature meets the requirements for the strength of the main metal

 

Author Biographies

Viktor Kvasnytskyi, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of Welding Production

Volodymyr Korzhyk, Guangdong Welding Institute (E.O. Paton Chinese-Ukrainian Institute of Welding) Changxing Road, 363, Tianhe, Guangzhou, China, 510650

Doctor of Technical Sciences, Senior Researcher, Director

Viacheslav Kvasnytskyi, Admiral Makarov National University of Shipbuilding Heroiv Ukrainy ave., 9, Mykolaiv, Ukraine, 54025

Doctor of Technical Sciences, Professor

Department of Welding Production

Heorhii Mialnitsa, Gas Turbine Research And Production Complex Zorya-Mashproekt Bohoiavlenskyiave., 42a, Mykolaiv, Ukraine, 54018

PhD, Associate Professor, Deputy Head of Metallurgy Department

Chunlin Dong, Guangdong Welding Institute (E.O. Paton Chinese-Ukrainian Institute of Welding) Changxing Road, 363, Tianhe, Guangzhou, China, 510650

Doctor of Engineering, Professor, General Director

Tetiana Pryadko, G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine Akademika Vernadskoho blvd., 36, Kyiv, Ukraine, 03142

PhD, Head of the Laboratory

Laboratory of Eutectic Alloys

Maksym Matviienko, Kherson Branch Admiral Makarov National University of Shipbuilding Ushakova ave., 44, Kherson, Ukraine, 73003

PhD, Associate Professor

Department of Welding

Yevhen Buturlia, Admiral Makarov National University of Shipbuilding Heroiv Ukrainy ave., 9, Mykolaiv, Ukraine, 54025

Postgraduate Student

Department of Welding Production

References

  1. Kablov, E. N., Petrushin, N. V., Sidorov, V. V. Rhenium in the thermally stable nickel alloys for single crystal blades of gas turbine engines. 7th International symposium on Technetium and Rhenium Science and Utilization. Available at: https://docplayer.ru/49222411-Rhenium-in-the-thermally-stable-nickel-alloys-for-single-crystal-blades-of-gas-turbine-engines.html
  2. Kablov, E. N. (2012). Strategical areas of developing materials and their processing technologies for the period up to 2030. Aviatsionnye materialy i tehnologii, 8, 7–17.
  3. Kablov, E. N., Ospennikova, O. G., Bazyleva, O. A. (2011). Materialy dlya vysokoteplonagruzhennyh detaley gazoturbinnyh dvigateley. Vestnik Moskovskogo gosudarstvennogo tehnicheskogo universiteta im. N.E. Baumana. Seriya «Mashinostroenie», SP2, 13–19. Available at: https://cyberleninka.ru/article/n/materialy-dlya-vysokoteplonagruzhennyh-detaley-gazoturbinnyh-dvigateley
  4. Yue, X., Liu, F., Chen, H., Wan, D., Qin, H. (2018). Effect of Bonding Temperature on Microstructure Evolution during TLP Bonding of a Ni3Al based Superalloy IC10. MATEC Web of Conferences, 206, 03004. doi: https://doi.org/10.1051/matecconf/201820603004
  5. Intermetallic Alloy Development. A Program Evaluation (1997). Washington, DC: The National Academies Press. doi: https://doi.org/10.17226/5701
  6. Buntushkin, V. P., Kablov, E. N., Bazyleva, O. A. (1995). Mehanicheskie i ekspluatatsionnye svoystva liteynogo zharoprochnogo splava na osnove intermetallida Ni3Al. Metally, 3, 70–73.
  7. Buntushkin, V. P., Bazyleva, O. A., Povarova, K. B., Kazanskaya, N. K. (1995). Vliyanie struktury na mehanicheskie svoystva legirovannogo intermetallida Ni3Al. Metally, 8, 74–80.
  8. Sims, Ch. T., Stoloff, N. S., Xagel', U. K. (1995). Supersplavy II: Zharoprochnye materialy dlya aerokosmicheskih i promyshlennyh energoustanovok. Vol. 1. Moscow: Metallurgiya, 384.
  9. Yushchenko, K. A., Makhnenko, V. I., Savchenko, V. S., Chervyakov, N. O., Velikoivanenko, E. A. (2007). Investigation of Thermal-Deformation State of Welded Joints in Stable-Austenitic Steels and Nickel Alloys. Welding in the World, 51 (9-10), 51–55. doi: https://doi.org/10.1007/bf03266600
  10. Kvasnitskiy, V. F. (1986) Svarka i Payka zharoprochnyh splavov v sudostroenii. Leningrad: Sudostroenie, 222.
  11. Kazakov, N. F. (Ed.) (1985). Diffusion Bonding of Materials. Moscow: Mir Publishers, 312.
  12. Krivtsun, I. V., Kvasnytskyi, V. V., Maksymov, S. Yu., Yermolaiev, H. V.; Paton, B. Ye. (Ed.) (2017). Spetsialni sposoby zvariuvannia. Mykolaiv: NUK, 346.
  13. Yermolaiev, H. V., Kvasnytskyi, V. V., Kvasnytskyi, V. F., Maksymova, S. V., Khorunov, V. F., Chyharov, V. V.; Khorunov, V. F., Kvasnytskyi, V. F. (Eds.) (2015). Paiannia materialiv. Mykolaiv: NUK, 340.
  14. Petrushynets, L. V., Falchenko, I. V., Ustinov, A. I., Novomlynets, O. O., Yushchenko, S. M. (2019). Vacuum Diffusion Welding of Intermetallic Alloy ɣ-TiAl with High-Temperature Alloy EI437B Through Nanolayered Interlayers. 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON). doi: https://doi.org/10.1109/ukrcon.2019.8879918
  15. Kvasnytskyi, V. V., Myalnitsa, G. F., Matviienko, M. V., Buturlya, E. A., Chunlin, D. (2019). Investigation of interaction of Ni3Al-based alloy with interlayers of different alloying systems for TLP-bonding. The Paton Welding Journal, 8, 12–17. doi: https://doi.org/10.15407/as2019.08.03
  16. Zhang, H. R., Ghoneim, A., Ojo, O. A. (2010). TEM analysis of diffusion brazement microstructure in a Ni3Al-based intermetallic alloy. Journal of Materials Science, 46 (2), 429–437. doi: https://doi.org/10.1007/s10853-010-4884-7
  17. Zeng, K., Jin, Z. (1990). Optimization and calculation of the Hf-Ni phase diagram. Journal of the Less Common Metals, 166 (1), 21–27. doi: https://doi.org/10.1016/0022-5088(90)90362-n
  18. Lukin, V. I., Ryl'nikov, B. C., Afanas'ev-Hodykin, A. N., Timofeeva, O. B. (2013). Osobennosti tehnologii diffuzionnoy Payki zharoprochnogo splava EP975 i liteynogo monokristallicheskogo intermetallidnogo splava VKNA-4U primenitel'no k konstruktsii «Blisk». Svarochnoe proizvodstvo, 7, 19–25.
  19. Rylnikov, V. S., Afanasiev-Khodykin, A. N., Galushka, I. A. (2013). Technology of braze design type «Blisk» from dissimilar alloys. Trudy VIAM, 10. Available at: http://viam-works.ru/plugins/content/journal/uploads/articles/pdf/251.pdf
  20. Malashenko, I. S., Kurenkova, V. V., Belyavin, A. F., Trohimchenko, V. V. (2006). Kratkovremennaya prochnost' i mikrostruktura payanyh soedineniy splava VZhL12U, poluchennyh s ispol'zovaniem borsoderzhashchego pripoya s prisadkoy kremniya. Sovremennaya elektrometallurgiya, 4, 26–42.
  21. Malashenko, I. S., Kurenkova, V. V., Onoprienko, E. V., Trohimchenko, V. V., Belyavin, A. F., Chervyakova, L. V. (2007). Mechanical properties and structure of brazed joints of cast nickel alloy ZhS26VI. Part 1. Sovremennaya elektrometallurgiya, 1, 25–32. Available at: http://dspace.nbuv.gov.ua/handle/123456789/95519
  22. Malashenko, I. S., Mazurak, V. E., Kushnareva, T. N., Kurenkova, V. V., Zavidonov, V. G., Yavdoshchina, E. F. (2014). Payka v vakuume litogo nikelevogo splava ZhS6U kompozitsionnymi pripoyami na osnove VPr-36. Chast' 1. Sovremennaya elektrometallurgiya, 4, 49–58. Available at: https://patonpublishinghouse.com/sem/pdf/2014/pdfarticles/04/9.pdf
  23. Belyavin, A. F., Kurenkova, V. V., Malashenko, I. S., Grabin, V. V., Trohimchenko, V. V., Chervyakova, L. V. (2010). Prochnost' i mikrostruktura Payanyh soedineniy splava ZhS6U, poluchennyh s ispol'zovaniem bor- i borkremniysoderzhashchih pripoev. Sovremennaya elektrometallurgiya, 2, 40–51. Available at: https://patonpublishinghouse.com/sem/pdf/2010/pdfarticles/02/10.pdf
  24. Kurenkova, V. V., Malashenko, I. S. (2008). High-temperature brazing of high-temperature castingalloys by boron containing braze alloy doped with silicon. Adgeziya rasplavov i payka materialov, 41, 63–87. Available at: http://dspace.nbuv.gov.ua/handle/123456789/4378
  25. Afanas'ev-Hodykin, A. N., Lukin, V. I., Ryl'nikov, V. S. (2010). Tehnologiya polucheniya nerazemnyh soedineniy iz splava ZhS36. Svarochnoe proizvodstvo, 7, 27–31.
  26. Lukin, V. I., Ryl'nikov, V. S., Afanas'ev-Hodykin, A. N., Orehov, N. G. (2012). Osobennosti payki monokristallicheskih otlivok iz splava ZhS32. Svarochnoe proizvodstvo, 5, 24–30. Available at: https://elibrary.ru/item.asp?id=18820125
  27. Maksimova, S. V., Horunov, V. F., Myasoed, V. V., Voronov, V. V., Koval'chuk, P. V. (2014). Mikrostruktura payanyh soedineniy alyuminidov nikelya. Avtomaticheskaya svarka, 10, 17–23. Available at: http://nbuv.gov.ua/UJRN/as_2014_10_4
  28. Maksymova, S. V., Voronov, V. V., Kovalchuk, P. V. (2017). Brazing filler metal without boron and silicon for brazing of heat-resistant nickel alloy. Automatic Welding, 8, 15–21. doi: https://doi.org/10.15407/as2017.08.02
  29. Myalnitsa, G. F., Maksuita, I. I., Kvasnitskaya, Yu. G., Mihnyan, E. V. (2013). Selection of new-alloying corrosion-resistant alloy for the nozzle blades. Metaloznavstvo ta obrobka metaliv, 2, 29–34. Available at: http://nbuv.gov.ua/UJRN/MOM_2013_2_8
  30. Kablov, E. N., Petrushin, N. V., Vasilenok, L. B., Morozova, G. I. (2000). Reniy v zharoprochnyh nikelevyh splavah dlya lopatok gazovyh turbin. Materialovedenie, 2, 23–29.
  31. Kablov, E. N., Petrushin, N. V., Vasilenok, L. B., Morozova, G. I. (2000). Reniy v zharoprochnyh nikelevyh splavah dlya lopatok gazovyh turbin (prodolzhenie). Materialovedenie, 3, 38–43.
  32. Petrunin, I. E., Bereznikov, Yu. I., Bun'kina, R. R., Il'ina, I. I., Markova, I. Yu., Kiselev, I. I. et. al.; Petrunin, I. E. (Ed.) (2003). Spravochnik po payke. Moscow: Mashinostroenie, 480.
  33. Kvasnitskiy, V. V., Timchenko, V. L., Khorunov, V. F. (1998). Die Untersuchung des Systems Ni(Nileg)-Hf-Zr für das Löten warmfester Nickellegierungen. DVS-Berichte: Band 192. Düsseldorf: DVS – Verl, 257–259.
  34. Kablov, E. N., Svetlov, I. L., Petrushin, N. V. (1997). Nikelevye zharoprochnye splavy dlya lit'ya lopatok s napravlennoy i monokristallicheskoy strukturoy. Chast' 1. Materialovedenie, 4.
  35. Massalski, P. R., Subramanian, H. O., Okamoto, H., Kacprzak, I. (Eds.) (1990). Binary Alloy Phase Diagrams. Vol. 3. Ohio: ASM International Materials Park, 3589.
  36. Gayduk, S., Kononov, V. (2016). Phase composition calculation by CALPHAD-method of hightemperature corrosion-resistant weldable nickel-base cast alloy. Vestnik dvigatelestroeniya, 1, 107–112. Available at: http://nbuv.gov.ua/UJRN/vidv_2016_1_21
  37. Koneva, N. A., Popova, N. A., Kalashnikov, M. P., Nikonenko, E. L., Fedorishcheva, M. V., Pasenova, A. D., Kozlov, E. V. (2013). Vliyanie temperatury deformatsii na fazoviy sostav i strukturu intermetallida Ni3Al, legirovannogo borom i gafniem. Fundamental'nye problemy sovremennogo materialovedeniya, 10 (3), 340–348. Available at: https://core.ac.uk/download/pdf/287457681.pdf
  38. Samsonov, G. V., Vinnitskiy, I. M. (1976). Tugoplavkie soedineniya. Moscow: Metallurgiya, 560.
  39. Matsugi, K., Murata, Y., Morinaga, M., Yukawa, N. (1992). Realistic Advancement for Nickel-Based Single Crystal Superalloys by the d-Electrons Concept. Superalloys 1992 (Seventh International Symposium). doi: https://doi.org/10.7449/1992/superalloys_1992_307_316

Downloads

Published

2020-12-31

How to Cite

Kvasnytskyi, V., Korzhyk, V., Kvasnytskyi, V., Mialnitsa, H., Dong, C., Pryadko, T., Matviienko, M., & Buturlia, Y. (2020). Designing brazing filler metal for heat-resistant alloys based on NI3AL intermetallide. Eastern-European Journal of Enterprise Technologies, 6(12 (108), 6–19. https://doi.org/10.15587/1729-4061.2020.217819

Issue

Section

Materials Science