Designing brazing filler metal for heat-resistant alloys based on NI3AL intermetallide
DOI:
https://doi.org/10.15587/1729-4061.2020.217819Keywords:
brazed joints, microstructure of joints, chemical composition, short-term and long-lasting strength, brazing technology, tantalum, rhenium, boronAbstract
One of the most promising structural materials in gas turbine engineering is the alloys based on an intermetallide, the type of Ni3Al, with an equiaxial and directional columnar structure. These materials make it possible to increase the working temperature of blades to 1,220 °C. The blades are made by the method of precise casting in a vacuum; in this case, it is necessary to technologically join the nozzle blades into blocks, to fix the signal holes in cooled blades, to correct casting defects.
Welding by melting intermetallide materials, as well as other cast heat-resistant nickel alloys (HNA), does not yield positive results. Therefore, various brazing techniques are used such as TLP-Bonding (Transient Liquid Phase Bonding). Filler metals' melting point is lower than that of the main metal. The key issue related to the technology of brazing HNA, including the design of appropriate filler metals, is the improvement of the physical-mechanical and operational properties of brazed joints.
This paper reports the established rational doping of a filler metal base, as well as depressants, the critical temperatures and surface properties of filler metals, their chemical composition, the structure and properties of brazed joints, the mode parameters, and brazing technology. To improve the stability of the structure and the high-temperature strength of the brazed joints, the filler metal was alloyed with rhenium and tantalum. Mechanical tests of brazed joints at 900 °C were conducted in Ukraine; at a temperature of 1,100 °C ‒ in the People's Republic of China. The test results showed that the short-term strength of alloy compounds with an equiaxial structure based on the Ni3Al-type intermetallide at 1,100 °C is 0.98 of the strength of the main metal. The long-lasting strength at the same temperature meets the requirements for the strength of the main metal
References
- Kablov, E. N., Petrushin, N. V., Sidorov, V. V. Rhenium in the thermally stable nickel alloys for single crystal blades of gas turbine engines. 7th International symposium on Technetium and Rhenium Science and Utilization. Available at: https://docplayer.ru/49222411-Rhenium-in-the-thermally-stable-nickel-alloys-for-single-crystal-blades-of-gas-turbine-engines.html
- Kablov, E. N. (2012). Strategical areas of developing materials and their processing technologies for the period up to 2030. Aviatsionnye materialy i tehnologii, 8, 7–17.
- Kablov, E. N., Ospennikova, O. G., Bazyleva, O. A. (2011). Materialy dlya vysokoteplonagruzhennyh detaley gazoturbinnyh dvigateley. Vestnik Moskovskogo gosudarstvennogo tehnicheskogo universiteta im. N.E. Baumana. Seriya «Mashinostroenie», SP2, 13–19. Available at: https://cyberleninka.ru/article/n/materialy-dlya-vysokoteplonagruzhennyh-detaley-gazoturbinnyh-dvigateley
- Yue, X., Liu, F., Chen, H., Wan, D., Qin, H. (2018). Effect of Bonding Temperature on Microstructure Evolution during TLP Bonding of a Ni3Al based Superalloy IC10. MATEC Web of Conferences, 206, 03004. doi: https://doi.org/10.1051/matecconf/201820603004
- Intermetallic Alloy Development. A Program Evaluation (1997). Washington, DC: The National Academies Press. doi: https://doi.org/10.17226/5701
- Buntushkin, V. P., Kablov, E. N., Bazyleva, O. A. (1995). Mehanicheskie i ekspluatatsionnye svoystva liteynogo zharoprochnogo splava na osnove intermetallida Ni3Al. Metally, 3, 70–73.
- Buntushkin, V. P., Bazyleva, O. A., Povarova, K. B., Kazanskaya, N. K. (1995). Vliyanie struktury na mehanicheskie svoystva legirovannogo intermetallida Ni3Al. Metally, 8, 74–80.
- Sims, Ch. T., Stoloff, N. S., Xagel', U. K. (1995). Supersplavy II: Zharoprochnye materialy dlya aerokosmicheskih i promyshlennyh energoustanovok. Vol. 1. Moscow: Metallurgiya, 384.
- Yushchenko, K. A., Makhnenko, V. I., Savchenko, V. S., Chervyakov, N. O., Velikoivanenko, E. A. (2007). Investigation of Thermal-Deformation State of Welded Joints in Stable-Austenitic Steels and Nickel Alloys. Welding in the World, 51 (9-10), 51–55. doi: https://doi.org/10.1007/bf03266600
- Kvasnitskiy, V. F. (1986) Svarka i Payka zharoprochnyh splavov v sudostroenii. Leningrad: Sudostroenie, 222.
- Kazakov, N. F. (Ed.) (1985). Diffusion Bonding of Materials. Moscow: Mir Publishers, 312.
- Krivtsun, I. V., Kvasnytskyi, V. V., Maksymov, S. Yu., Yermolaiev, H. V.; Paton, B. Ye. (Ed.) (2017). Spetsialni sposoby zvariuvannia. Mykolaiv: NUK, 346.
- Yermolaiev, H. V., Kvasnytskyi, V. V., Kvasnytskyi, V. F., Maksymova, S. V., Khorunov, V. F., Chyharov, V. V.; Khorunov, V. F., Kvasnytskyi, V. F. (Eds.) (2015). Paiannia materialiv. Mykolaiv: NUK, 340.
- Petrushynets, L. V., Falchenko, I. V., Ustinov, A. I., Novomlynets, O. O., Yushchenko, S. M. (2019). Vacuum Diffusion Welding of Intermetallic Alloy ɣ-TiAl with High-Temperature Alloy EI437B Through Nanolayered Interlayers. 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON). doi: https://doi.org/10.1109/ukrcon.2019.8879918
- Kvasnytskyi, V. V., Myalnitsa, G. F., Matviienko, M. V., Buturlya, E. A., Chunlin, D. (2019). Investigation of interaction of Ni3Al-based alloy with interlayers of different alloying systems for TLP-bonding. The Paton Welding Journal, 8, 12–17. doi: https://doi.org/10.15407/as2019.08.03
- Zhang, H. R., Ghoneim, A., Ojo, O. A. (2010). TEM analysis of diffusion brazement microstructure in a Ni3Al-based intermetallic alloy. Journal of Materials Science, 46 (2), 429–437. doi: https://doi.org/10.1007/s10853-010-4884-7
- Zeng, K., Jin, Z. (1990). Optimization and calculation of the Hf-Ni phase diagram. Journal of the Less Common Metals, 166 (1), 21–27. doi: https://doi.org/10.1016/0022-5088(90)90362-n
- Lukin, V. I., Ryl'nikov, B. C., Afanas'ev-Hodykin, A. N., Timofeeva, O. B. (2013). Osobennosti tehnologii diffuzionnoy Payki zharoprochnogo splava EP975 i liteynogo monokristallicheskogo intermetallidnogo splava VKNA-4U primenitel'no k konstruktsii «Blisk». Svarochnoe proizvodstvo, 7, 19–25.
- Rylnikov, V. S., Afanasiev-Khodykin, A. N., Galushka, I. A. (2013). Technology of braze design type «Blisk» from dissimilar alloys. Trudy VIAM, 10. Available at: http://viam-works.ru/plugins/content/journal/uploads/articles/pdf/251.pdf
- Malashenko, I. S., Kurenkova, V. V., Belyavin, A. F., Trohimchenko, V. V. (2006). Kratkovremennaya prochnost' i mikrostruktura payanyh soedineniy splava VZhL12U, poluchennyh s ispol'zovaniem borsoderzhashchego pripoya s prisadkoy kremniya. Sovremennaya elektrometallurgiya, 4, 26–42.
- Malashenko, I. S., Kurenkova, V. V., Onoprienko, E. V., Trohimchenko, V. V., Belyavin, A. F., Chervyakova, L. V. (2007). Mechanical properties and structure of brazed joints of cast nickel alloy ZhS26VI. Part 1. Sovremennaya elektrometallurgiya, 1, 25–32. Available at: http://dspace.nbuv.gov.ua/handle/123456789/95519
- Malashenko, I. S., Mazurak, V. E., Kushnareva, T. N., Kurenkova, V. V., Zavidonov, V. G., Yavdoshchina, E. F. (2014). Payka v vakuume litogo nikelevogo splava ZhS6U kompozitsionnymi pripoyami na osnove VPr-36. Chast' 1. Sovremennaya elektrometallurgiya, 4, 49–58. Available at: https://patonpublishinghouse.com/sem/pdf/2014/pdfarticles/04/9.pdf
- Belyavin, A. F., Kurenkova, V. V., Malashenko, I. S., Grabin, V. V., Trohimchenko, V. V., Chervyakova, L. V. (2010). Prochnost' i mikrostruktura Payanyh soedineniy splava ZhS6U, poluchennyh s ispol'zovaniem bor- i borkremniysoderzhashchih pripoev. Sovremennaya elektrometallurgiya, 2, 40–51. Available at: https://patonpublishinghouse.com/sem/pdf/2010/pdfarticles/02/10.pdf
- Kurenkova, V. V., Malashenko, I. S. (2008). High-temperature brazing of high-temperature castingalloys by boron containing braze alloy doped with silicon. Adgeziya rasplavov i payka materialov, 41, 63–87. Available at: http://dspace.nbuv.gov.ua/handle/123456789/4378
- Afanas'ev-Hodykin, A. N., Lukin, V. I., Ryl'nikov, V. S. (2010). Tehnologiya polucheniya nerazemnyh soedineniy iz splava ZhS36. Svarochnoe proizvodstvo, 7, 27–31.
- Lukin, V. I., Ryl'nikov, V. S., Afanas'ev-Hodykin, A. N., Orehov, N. G. (2012). Osobennosti payki monokristallicheskih otlivok iz splava ZhS32. Svarochnoe proizvodstvo, 5, 24–30. Available at: https://elibrary.ru/item.asp?id=18820125
- Maksimova, S. V., Horunov, V. F., Myasoed, V. V., Voronov, V. V., Koval'chuk, P. V. (2014). Mikrostruktura payanyh soedineniy alyuminidov nikelya. Avtomaticheskaya svarka, 10, 17–23. Available at: http://nbuv.gov.ua/UJRN/as_2014_10_4
- Maksymova, S. V., Voronov, V. V., Kovalchuk, P. V. (2017). Brazing filler metal without boron and silicon for brazing of heat-resistant nickel alloy. Automatic Welding, 8, 15–21. doi: https://doi.org/10.15407/as2017.08.02
- Myalnitsa, G. F., Maksuita, I. I., Kvasnitskaya, Yu. G., Mihnyan, E. V. (2013). Selection of new-alloying corrosion-resistant alloy for the nozzle blades. Metaloznavstvo ta obrobka metaliv, 2, 29–34. Available at: http://nbuv.gov.ua/UJRN/MOM_2013_2_8
- Kablov, E. N., Petrushin, N. V., Vasilenok, L. B., Morozova, G. I. (2000). Reniy v zharoprochnyh nikelevyh splavah dlya lopatok gazovyh turbin. Materialovedenie, 2, 23–29.
- Kablov, E. N., Petrushin, N. V., Vasilenok, L. B., Morozova, G. I. (2000). Reniy v zharoprochnyh nikelevyh splavah dlya lopatok gazovyh turbin (prodolzhenie). Materialovedenie, 3, 38–43.
- Petrunin, I. E., Bereznikov, Yu. I., Bun'kina, R. R., Il'ina, I. I., Markova, I. Yu., Kiselev, I. I. et. al.; Petrunin, I. E. (Ed.) (2003). Spravochnik po payke. Moscow: Mashinostroenie, 480.
- Kvasnitskiy, V. V., Timchenko, V. L., Khorunov, V. F. (1998). Die Untersuchung des Systems Ni(Nileg)-Hf-Zr für das Löten warmfester Nickellegierungen. DVS-Berichte: Band 192. Düsseldorf: DVS – Verl, 257–259.
- Kablov, E. N., Svetlov, I. L., Petrushin, N. V. (1997). Nikelevye zharoprochnye splavy dlya lit'ya lopatok s napravlennoy i monokristallicheskoy strukturoy. Chast' 1. Materialovedenie, 4.
- Massalski, P. R., Subramanian, H. O., Okamoto, H., Kacprzak, I. (Eds.) (1990). Binary Alloy Phase Diagrams. Vol. 3. Ohio: ASM International Materials Park, 3589.
- Gayduk, S., Kononov, V. (2016). Phase composition calculation by CALPHAD-method of hightemperature corrosion-resistant weldable nickel-base cast alloy. Vestnik dvigatelestroeniya, 1, 107–112. Available at: http://nbuv.gov.ua/UJRN/vidv_2016_1_21
- Koneva, N. A., Popova, N. A., Kalashnikov, M. P., Nikonenko, E. L., Fedorishcheva, M. V., Pasenova, A. D., Kozlov, E. V. (2013). Vliyanie temperatury deformatsii na fazoviy sostav i strukturu intermetallida Ni3Al, legirovannogo borom i gafniem. Fundamental'nye problemy sovremennogo materialovedeniya, 10 (3), 340–348. Available at: https://core.ac.uk/download/pdf/287457681.pdf
- Samsonov, G. V., Vinnitskiy, I. M. (1976). Tugoplavkie soedineniya. Moscow: Metallurgiya, 560.
- Matsugi, K., Murata, Y., Morinaga, M., Yukawa, N. (1992). Realistic Advancement for Nickel-Based Single Crystal Superalloys by the d-Electrons Concept. Superalloys 1992 (Seventh International Symposium). doi: https://doi.org/10.7449/1992/superalloys_1992_307_316
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Viktor Kvasnytskyi, Volodymyr Korzhyk, Viacheslav Kvasnytskyi, Heorhii Mialnitsa, Chunlin Dong, Tetiana Pryadko, Maksym Matviienko, Yevhen Buturlia
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.