Single-photon emission tomograpy methods

Authors

  • Олег Владимирович Малахов Volodymyr Dahl East Ukrainian National University, Molodezhniy bl., 20-a, Lugansk, Ukraine, 91034, Ukraine https://orcid.org/0000-0001-8646-1374
  • Сергей Александрович Щелканов Volodymyr Dahl East Ukrainian National University Molodizhnyi kvartal, 20-a, Lugansk, Ukraine, 91034, Ukraine https://orcid.org/0000-0002-4889-6809

DOI:

https://doi.org/10.15587/1729-4061.2014.22003

Keywords:

single-photon emission computed tomography, gamma-rays, gamma-camera, coded aperture, Radon transform

Abstract

The research topic is a part of the project for developing a tomographic gamma-monitor for controlling nuclear technical objects. The device must provide localization, quantitative assessment, identification and visualization of radionuclide distribution by the volume of the object under investigation.

A comparative analysis of options, algorithms and methods of a single-photon emission computer tomography is given in the paper. An overview of the main tomography objectives is given, and the methods for their solution are briefly considered. In particular, design features of the devices, general issues of the data processing methods, several methods of original structure reconstruction are considered. The classes of tomography problems with a limited amount of data: a few projection and a small-angle tomography are considered. In conclusion, an overview of the properties of tomography systems with coded apertures is given.

As a result of studying the tomography methods the conclusion on the most promising implementation of data processing algorithm for the designed device was made.

Author Biographies

Олег Владимирович Малахов, Volodymyr Dahl East Ukrainian National University, Molodezhniy bl., 20-a, Lugansk, Ukraine, 91034

Ph. D., docent, Head of Department Department of Automatization and computer-integrated technologies

Сергей Александрович Щелканов, Volodymyr Dahl East Ukrainian National University Molodizhnyi kvartal, 20-a, Lugansk, Ukraine, 91034

Postgraduate student

Department of Automation and Computer Integrated Techniques

References

  1. Anger, H. C. Scintillation cameras with multichannel collimators [Text] / H. C. Anger // Journal of Nuclear Medicine. – 1964. – № 5. – P. 515–531.
  2. Калашников, С. Д. Физические основы проектирования сцинтилляционных гамма-камер [Текст] / С. Д. Калашников. – М.: Энергоатомиздат, 1985. – 120 с.
  3. Федоров, Г. А. Однофотонная вычислительная томография [Текст] : уч. пос. / Г. А. Федоров. – М.: МИФИ, 2008. – 204 с.
  4. Терещенко, С. А. Методы вычислительной томографии [Текст] / С. А. Терещенко. – М.: ФИЗМАТЛИТ, 2004. – 320 с.
  5. Фёдоров, Г. А. Вычислительная эмиссионная томография [Текст] / Г. А. Фёдоров, С. А. Терещенко. – М.: Энергоатомиздат, 1990. – 184 с.
  6. Chang, L. T. A method for attenuation correction in radionuclide computed tomography [Text] / L. T. Chang // IEEE Tr. on Nuclear Science. – 1978. – Vol. NS-25, № 1. – P. 638–643.
  7. Херман, Г. Т. Восстановление изображений по проекциям. Основы реконструктивной томографии [Текст] / Г. Т. Херман. – М.: Мир, 1983. – 349 с.
  8. Soares, E. J. Image Reconstruction in Emission Tomography I. Non-iterative Methods [Electronic resource] / E. J. Soares – Electronic text data (606598 bytes). – available at : http://www.capital.edu/uploadedFiles/Capital/Academics/Schools_and_Departments/Natural_Sciences,_Nursing_and_Health/Computa-tional_Studies/Educational_Materials/Neuroscience/imagerecon7104.pdf - 05.10.2013
  9. Raparia, D. The Algebraic Reconstruction Technique (ART) [Electronic resource] / D. Raparia, J. Alessi, A. Kponou. – Electronic text data (387866 bytes). – Available at: http://arxiv.org/abs/physics/9709014 – 09.10.2013
  10. Chidlow, K. Rapid Emission Tomography Reconstruction. Proceedings of the 2003 Eurographics [Text] / K. C hidlow, T. Moller. – IEEE TVCG Workshop on Volume graphics, 2003. – P. 15–26
  11. Barendt, S. A variational model for SPECT reconstruction with a nonlinearly transformed attenuation prototype [Text] / S. Barendt, J. Modersitzki // International Journal of Computer Mathematics. – 2013. – Vol.90, № 1. – P. 82–91
  12. Fokas, A. S. Reconstruction algorithm for single photon emission computed tomography and its numerical implementation [Text] / A. S. Fokas, A. Iserles, V. Marinakis // Soc. Inter-face. – 2006. – № 3. – P. 45–54.
  13. Bruyant, P. P. Analytic and Iterative Reconstruction Algorithms in SPECT [Text] / P. P. Bruyant // Journal of Nuclear Medicine. – 2002. – Vol. 43, № 10. – P. 1343-1358.
  14. Catur, Edi Widodo Tomographic Image Reconstruction from a Sparse Projection Data Using Sinogram Interpolation [Text] / Edi Widodo Catur, Kus Kusminarto, Gede Bayu Suparta // International Journal of Engineering & Technology IJET-IJENS. – Vol. 11, № 05. – P. 86–89.
  15. Clackdoyle, R. Tomographic Reconstruction in the 21st Century [Text] / R. Clackdoyle, M. Defrise // IEEE Signal Processing Magazine. – 2010. – Vol. 27, Issue 4. – P. 60–80
  16. Wolf, P. A first-order primal-dual reconstruction algorithm for few-view SPECT [Text] / P. Wolf, J. H. Jorgensen, T. G. Schmidt, E. Y. Sidky // IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). – 2012. – P. 2381–2385.
  17. Агафонов, М. И. Томография при ограниченном числе проекций. II. Радиоастрономический метод CLEAN в приложении к трёхмерным задачам. [Текст] / М. И. Агафонов, О. И. Шарова // Известия вузов. Радиофизика. – 2005 – Т. 48, № 5. – С. 367–381.
  18. Cannon, T. M. Tomographical Imaging Using Uniformly Redundant Arrays. [Text] / T. M. Cannon, E. E. Fenimore // Applied Optics. – 1979. – Vol. 18, № 7. – P. 1052–1057.
  19. Плахотник, В. Ю. Томографические возможности систем визуализации гамма-излучения с кодированными апертурами. [Текст] / В. Ю. Плахотник, Г. А. Поляков / Системні технології. Регіональній міжвузівський збірник наукових праць, Дніпропетровськ. – 2010. – Вип. 4 (69). – С. 79–87.
  20. Anger, H. C. (1964). Scintillation cameras with multichannel collimators. Journal of Nuclear Medicine, 5, 515–531.
  21. Kalashnikov, S. D. (1985). Fizicheskie osnovy proektirovanija scintilljacionnyh gamma-kamer. Energoatomizdat, 120.
  22. Fedorov, G. A. (2008). Odnofotonnaja vychislitel’naja tomografija: Uchebnoe posobie. MEPI, 204.
  23. Tereschenko, S. A. (2004). Metody vychislitel’noj tomografii. FIZMATLIT, 320.
  24. Fjodorov, G. A. (1990). Vychislitel’naja emissionnaja tomografija. Energoatomizdat, 184.
  25. Chang, L. T. (1978). A method for attenuation correction in radionuclide computed tomography. IEEE Tr. on Nuclear Science, Vol. NS-25, № 1, 638–643.
  26. Herman, G. T. (1983). Vosstanovlenie izobrazhenij po proekcijam: osnovy rekonstruktivnoj tomografii. Mir, 349.
  27. Soares, E. J. Image Reconstruction in Emission Tomography I. Non-iterative Methods. , Available at: http://www.capital.edu/uploadedFiles/Capital/Academics/Schools_and_Departments/Natural_Sciences,_Nursing_and_Health/Computational_Studies/Educational_Materials/Neuroscience/imagerecon7104.pdf
  28. Raparia, D., Alessi, J., Kponou A. The Algebraic Reconstruction Technique (ART). Available at: http://arxiv.org/abs/physics/9709014.
  29. Chidlow, K., Moller, T. (2003). Rapid Emission Tomography Reconstruction. Proceedings of the 2003 Eurographics. IEEE TVCG Workshop on Volume graphics, 15–26
  30. Barendt, S. Modersitzki, J. (2013). A variational model for SPECT reconstruction with a nonlinearly transformed attenuation prototype. – International Journal of Computer Mathematics, Vol. 90, № 1, 82–91.
  31. Fokas, A. S., Iserles, A., Marinakis, V. (2006). Reconstruction algorithm for single photon emission computed tomography and its numerical implementation. Soc. Inter-face, 3, 45–54.
  32. Bruyant, P. P. (2002). Analytic and Iterative Reconstruction Algorithms in SPECT. Journal of Nuclear Medicine, Vol. 43, № 10, 1343–1358.
  33. Catur, Edi Widodo, Kus, Kusminarto, Gede, Bayu Suparta (2011). Tomographic Image Reconstruction from a Sparse Projection Data Using Sinogram Interpolation. International Journal of Engineering & Technology IJET-IJENS, Vol. 11, № 05, 86–89.
  34. Clackdoyle, R., Defrise, M. (2010). Tomographic Reconstruction in the 21st Century. IEEE Signal Processing Magazine, Vol. 27, Issue 4, 60–80.
  35. Wolf, P., Jorgensen, J. H., Schmidt, T. G., Sidky, E. Y. (2012). A first-order primal-dual reconstruction algorithm for few-view SPECT. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2381–2385
  36. Agafonov, M. I., Sharova, O. I. (2005), Tomografija pri ogranichennom chisle proekcij. II. Radioastronomicheskij metod CLEAN v prilozhenii k trjohmernym zadacham. Izvestija vuzov. Radiofizika, Vol. 48, № 5, 367–381.
  37. Cannon, T. M., Fenimore, E. E. (1979). Tomographical Imaging Using Uniformly Redundant Arrays. Applied Optics, Vol. 18, № 7, 1052–1057.
  38. Plahotnik, V. Ju., Poljakov, G. A. (2010). Tomograficheskie vozmozhnosti sistem vizualizacii gamma-izluchenija s kodirovannymi aperturami. Sistemnі tehnologіyi. Dnіpropetrovsk, 4 (69), 79–87.

Published

2014-04-15

How to Cite

Малахов, О. В., & Щелканов, С. А. (2014). Single-photon emission tomograpy methods. Eastern-European Journal of Enterprise Technologies, 2(5(68), 3–7. https://doi.org/10.15587/1729-4061.2014.22003

Issue

Section

Applied physics