Single-photon emission tomograpy methods
DOI:
https://doi.org/10.15587/1729-4061.2014.22003Keywords:
single-photon emission computed tomography, gamma-rays, gamma-camera, coded aperture, Radon transformAbstract
The research topic is a part of the project for developing a tomographic gamma-monitor for controlling nuclear technical objects. The device must provide localization, quantitative assessment, identification and visualization of radionuclide distribution by the volume of the object under investigation.
A comparative analysis of options, algorithms and methods of a single-photon emission computer tomography is given in the paper. An overview of the main tomography objectives is given, and the methods for their solution are briefly considered. In particular, design features of the devices, general issues of the data processing methods, several methods of original structure reconstruction are considered. The classes of tomography problems with a limited amount of data: a few projection and a small-angle tomography are considered. In conclusion, an overview of the properties of tomography systems with coded apertures is given.
As a result of studying the tomography methods the conclusion on the most promising implementation of data processing algorithm for the designed device was made.
References
- Anger, H. C. Scintillation cameras with multichannel collimators [Text] / H. C. Anger // Journal of Nuclear Medicine. – 1964. – № 5. – P. 515–531.
- Калашников, С. Д. Физические основы проектирования сцинтилляционных гамма-камер [Текст] / С. Д. Калашников. – М.: Энергоатомиздат, 1985. – 120 с.
- Федоров, Г. А. Однофотонная вычислительная томография [Текст] : уч. пос. / Г. А. Федоров. – М.: МИФИ, 2008. – 204 с.
- Терещенко, С. А. Методы вычислительной томографии [Текст] / С. А. Терещенко. – М.: ФИЗМАТЛИТ, 2004. – 320 с.
- Фёдоров, Г. А. Вычислительная эмиссионная томография [Текст] / Г. А. Фёдоров, С. А. Терещенко. – М.: Энергоатомиздат, 1990. – 184 с.
- Chang, L. T. A method for attenuation correction in radionuclide computed tomography [Text] / L. T. Chang // IEEE Tr. on Nuclear Science. – 1978. – Vol. NS-25, № 1. – P. 638–643.
- Херман, Г. Т. Восстановление изображений по проекциям. Основы реконструктивной томографии [Текст] / Г. Т. Херман. – М.: Мир, 1983. – 349 с.
- Soares, E. J. Image Reconstruction in Emission Tomography I. Non-iterative Methods [Electronic resource] / E. J. Soares – Electronic text data (606598 bytes). – available at : http://www.capital.edu/uploadedFiles/Capital/Academics/Schools_and_Departments/Natural_Sciences,_Nursing_and_Health/Computa-tional_Studies/Educational_Materials/Neuroscience/imagerecon7104.pdf - 05.10.2013
- Raparia, D. The Algebraic Reconstruction Technique (ART) [Electronic resource] / D. Raparia, J. Alessi, A. Kponou. – Electronic text data (387866 bytes). – Available at: http://arxiv.org/abs/physics/9709014 – 09.10.2013
- Chidlow, K. Rapid Emission Tomography Reconstruction. Proceedings of the 2003 Eurographics [Text] / K. C hidlow, T. Moller. – IEEE TVCG Workshop on Volume graphics, 2003. – P. 15–26
- Barendt, S. A variational model for SPECT reconstruction with a nonlinearly transformed attenuation prototype [Text] / S. Barendt, J. Modersitzki // International Journal of Computer Mathematics. – 2013. – Vol.90, № 1. – P. 82–91
- Fokas, A. S. Reconstruction algorithm for single photon emission computed tomography and its numerical implementation [Text] / A. S. Fokas, A. Iserles, V. Marinakis // Soc. Inter-face. – 2006. – № 3. – P. 45–54.
- Bruyant, P. P. Analytic and Iterative Reconstruction Algorithms in SPECT [Text] / P. P. Bruyant // Journal of Nuclear Medicine. – 2002. – Vol. 43, № 10. – P. 1343-1358.
- Catur, Edi Widodo Tomographic Image Reconstruction from a Sparse Projection Data Using Sinogram Interpolation [Text] / Edi Widodo Catur, Kus Kusminarto, Gede Bayu Suparta // International Journal of Engineering & Technology IJET-IJENS. – Vol. 11, № 05. – P. 86–89.
- Clackdoyle, R. Tomographic Reconstruction in the 21st Century [Text] / R. Clackdoyle, M. Defrise // IEEE Signal Processing Magazine. – 2010. – Vol. 27, Issue 4. – P. 60–80
- Wolf, P. A first-order primal-dual reconstruction algorithm for few-view SPECT [Text] / P. Wolf, J. H. Jorgensen, T. G. Schmidt, E. Y. Sidky // IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). – 2012. – P. 2381–2385.
- Агафонов, М. И. Томография при ограниченном числе проекций. II. Радиоастрономический метод CLEAN в приложении к трёхмерным задачам. [Текст] / М. И. Агафонов, О. И. Шарова // Известия вузов. Радиофизика. – 2005 – Т. 48, № 5. – С. 367–381.
- Cannon, T. M. Tomographical Imaging Using Uniformly Redundant Arrays. [Text] / T. M. Cannon, E. E. Fenimore // Applied Optics. – 1979. – Vol. 18, № 7. – P. 1052–1057.
- Плахотник, В. Ю. Томографические возможности систем визуализации гамма-излучения с кодированными апертурами. [Текст] / В. Ю. Плахотник, Г. А. Поляков / Системні технології. Регіональній міжвузівський збірник наукових праць, Дніпропетровськ. – 2010. – Вип. 4 (69). – С. 79–87.
- Anger, H. C. (1964). Scintillation cameras with multichannel collimators. Journal of Nuclear Medicine, 5, 515–531.
- Kalashnikov, S. D. (1985). Fizicheskie osnovy proektirovanija scintilljacionnyh gamma-kamer. Energoatomizdat, 120.
- Fedorov, G. A. (2008). Odnofotonnaja vychislitel’naja tomografija: Uchebnoe posobie. MEPI, 204.
- Tereschenko, S. A. (2004). Metody vychislitel’noj tomografii. FIZMATLIT, 320.
- Fjodorov, G. A. (1990). Vychislitel’naja emissionnaja tomografija. Energoatomizdat, 184.
- Chang, L. T. (1978). A method for attenuation correction in radionuclide computed tomography. IEEE Tr. on Nuclear Science, Vol. NS-25, № 1, 638–643.
- Herman, G. T. (1983). Vosstanovlenie izobrazhenij po proekcijam: osnovy rekonstruktivnoj tomografii. Mir, 349.
- Soares, E. J. Image Reconstruction in Emission Tomography I. Non-iterative Methods. , Available at: http://www.capital.edu/uploadedFiles/Capital/Academics/Schools_and_Departments/Natural_Sciences,_Nursing_and_Health/Computational_Studies/Educational_Materials/Neuroscience/imagerecon7104.pdf
- Raparia, D., Alessi, J., Kponou A. The Algebraic Reconstruction Technique (ART). Available at: http://arxiv.org/abs/physics/9709014.
- Chidlow, K., Moller, T. (2003). Rapid Emission Tomography Reconstruction. Proceedings of the 2003 Eurographics. IEEE TVCG Workshop on Volume graphics, 15–26
- Barendt, S. Modersitzki, J. (2013). A variational model for SPECT reconstruction with a nonlinearly transformed attenuation prototype. – International Journal of Computer Mathematics, Vol. 90, № 1, 82–91.
- Fokas, A. S., Iserles, A., Marinakis, V. (2006). Reconstruction algorithm for single photon emission computed tomography and its numerical implementation. Soc. Inter-face, 3, 45–54.
- Bruyant, P. P. (2002). Analytic and Iterative Reconstruction Algorithms in SPECT. Journal of Nuclear Medicine, Vol. 43, № 10, 1343–1358.
- Catur, Edi Widodo, Kus, Kusminarto, Gede, Bayu Suparta (2011). Tomographic Image Reconstruction from a Sparse Projection Data Using Sinogram Interpolation. International Journal of Engineering & Technology IJET-IJENS, Vol. 11, № 05, 86–89.
- Clackdoyle, R., Defrise, M. (2010). Tomographic Reconstruction in the 21st Century. IEEE Signal Processing Magazine, Vol. 27, Issue 4, 60–80.
- Wolf, P., Jorgensen, J. H., Schmidt, T. G., Sidky, E. Y. (2012). A first-order primal-dual reconstruction algorithm for few-view SPECT. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2381–2385
- Agafonov, M. I., Sharova, O. I. (2005), Tomografija pri ogranichennom chisle proekcij. II. Radioastronomicheskij metod CLEAN v prilozhenii k trjohmernym zadacham. Izvestija vuzov. Radiofizika, Vol. 48, № 5, 367–381.
- Cannon, T. M., Fenimore, E. E. (1979). Tomographical Imaging Using Uniformly Redundant Arrays. Applied Optics, Vol. 18, № 7, 1052–1057.
- Plahotnik, V. Ju., Poljakov, G. A. (2010). Tomograficheskie vozmozhnosti sistem vizualizacii gamma-izluchenija s kodirovannymi aperturami. Sistemnі tehnologіyi. Dnіpropetrovsk, 4 (69), 79–87.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Олег Владимирович Малахов, Сергей Александрович Щелканов
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.