An analysis of effect of water hyacinth carbonization temperature on fabrication and EMI shielding radar

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.224219

Abstract

The need to increase the ability of water hyacinth composites as EMI radar protection is related to the carbonization process of organic materials. This research aimed to determine the effect of water hyacinth carbonization temperature on the effectiveness of fabrication and EMI shielding radar. The research method includes the preparations such as cutting, washing, and drying the water hyacinth. The drying process is carried out using an oven with a temperature of 70 °C for 4 days. Then the water hyacinth is mashed until it reaches the 80 mesh size. Then the carbonization process is carried out, with variations in carbonization temperature ranging from 500 °C, 600 °C, 700 °C, 800 °C, 900 °C and 1,000 °C, with a heat increase speed of 3 °C/minutes. After reaching the specified temperature, a holding time is then carried out for 1 hour. Furthermore, the composite composition of 30 % water hyacinth activated carbon powder and 70 % phenol-formaldehyde (PF) resin was molded using a hot press with a pressure of 300 kg/cm2 at 180 °C for 10 minutes. The results showed that the water hyacinth composite could be used as an EMI protection material at the X-Band frequency (8–12.5 GHz). Where the electrical conductivity and EMI SE increases with increasing carbonization temperature. Water hyacinth composites at a carbonization temperature of 1,000 °C showed the highest electrical conductivity and the highest EMI SE, respectively 4.64∙10-2 S/cm and 41.15 dB (attenuation 99.99 %) at a frequency of 8 GHz. The high absorption contribution is associated with the synergy combination of KCl and the pore structure of the goitre. KCl contributes to the magnetic properties and pore structure with high electrical conductivity values

Author Biographies

Azam Muzakhim Imammuddin, State Polytechnic of Malang; Brawijaya University

Staf Pengajar

Program Studi Teknik Telekomunikasi

Departement of Electrical Engineering

Student of Mechanical Engineering Doctoral Program

Departemen of Mechanical Engineering

Sudjito Suparman, Brawijaya University

PhD, Professor

Department of Mechanical Engineering

Wahyono Suprapto, Brawijaya University

PhD, Professor

Department of Mechanical Engineering

Achmad As’Ad Sonief, Brawijaya University

Doctor of Engineering Sciences

Department of Mechanical Engineering

References

  1. Basics in EMC / EMI and Power Quality Introduction, Annotations, Applications (2013). SCHAFFNER. Available at: https://www.schaffner.com/fileadmin/media/downloads/brochure/Schaffner_Brochure_Basics_in_EMC_and_power_quality.pdf
  2. Anzeze, A. D. (2008). Biosorption Of Heavy Metals Using Water Hyacinth Eichhornia Crassipes (Mart.) Solms- Laubach: Adsorption Properties And Technological Assessment. No. 156. Available at: http://erepository.uonbi.ac.ke/bitstream/handle/11295/6844/Amboga_Biosorption%20Of%20Heavy%20Metals%20Using%20Water%20Hyacinth%20Eichhornia%20Crassipes%20%28Mart.%29%20Solms-%20Laubach%20%20Adsorption%20Properties%20And%20Technological%20Assessment.pdf?sequence=1&isAllowed=y
  3. Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9, 1050–1074. doi: https://doi.org/10.3762/bjnano.9.98
  4. Mahmood, T., Malik, S. A., Hussain, S. T. (2010). Biosorption and recovery of heavy metals from aqueous solutions by eichhornia crassipes (water hyacinth) ASH. BioResources, 5 (2), 1244–1256. Available at: https://www.researchgate.net/publication/260156524_Biosorption_and_recovery_of_heavy_metals_from_aqueous_solutions_by_eichhornia_crassipes_water_hyacinth_ASH
  5. Singh, A. P., Mishra, M., Dhawan, S. K. (2014). Conducting Multiphase Magnetic Nanocomposites for Microwave Shielding Application. Nanomagnetism, 246–277. Available at: https://www.researchgate.net/publication/272747501_Conducting_Multiphase_Magnetic_Nanocomposites_for_Microwave_Shielding_Application
  6. Wanasinghe, D., Aslani, F., Ma, G. (2020). Electromagnetic shielding properties of carbon fibre reinforced cementitious composites. Construction and Building Materials, 260, 120439. doi: https://doi.org/10.1016/j.conbuildmat.2020.120439
  7. Moradi, M., Naghdi, N., Hemmati, H., Asadi-Samani, M., Bahmani, M. (2016). Effects of the Effect of Ultra High Frequency Mobile Phone Radiation on Human Health. Electronic Physician, 8 (5), 2452–2457. doi: https://doi.org/10.19082/2542
  8. Huang, H. (2016). Development of predictive models for electromagnetic robustness of electronic components. HAL. Available at: https://tel.archives-ouvertes.fr/tel-01261471/document
  9. Susilo, S. H., Suparman, S., Mardiana, D., Hamidi, N. (2016). The Effect of Velocity Ratio Study on Microchannel Hydrodynamics Focused of Mixing Glycerol Nitration Reaction. Periodica Polytechnica Mechanical Engineering, 60 (4), 228–232. doi: https://doi.org/10.3311/ppme.8894
  10. Kumar, P., Narayan Maiti, U., Sikdar, A., Kumar Das, T., Kumar, A., Sudarsan, V. (2019). Recent Advances in Polymer and Polymer Composites for Electromagnetic Interference Shielding: Review and Future Prospects. Polymer Reviews, 59 (4), 687–738. doi: https://doi.org/10.1080/15583724.2019.1625058
  11. Sankaran, S., Deshmukh, K., Ahamed, M. B., Khadheer Pasha, S. K. (2018). Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 114, 49–71. doi: https://doi.org/10.1016/j.compositesa.2018.08.006
  12. Singh, A. K., Shishkin, A., Koppel, T., Gupta, N. (2018). A review of porous lightweight composite materials for electromagnetic interference shielding. Composites Part B: Engineering, 149, 188–197. doi: https://doi.org/10.1016/j.compositesb.2018.05.027
  13. Yousif, E., Haddad, R. (2013). Photodegradation and photostabilization of polymers, especially polystyrene: review. SpringerPlus, 2 (1). doi: https://doi.org/10.1186/2193-1801-2-398
  14. Krishnasamy, J., Thilagavathi, G., Alagirusamy, R., Das, A. (2020). Metal-embedded matrices for EMI shielding. Materials for Potential EMI Shielding Applications, 111–120. doi: https://doi.org/10.1016/b978-0-12-817590-3.00007-5
  15. Chuayjumnong, S., Karrila, S., Jumrat, S., Pianroj, Y. (2020). Activated carbon and palm oil fuel ash as microwave absorbers for microwave-assisted pyrolysis of oil palm shell waste. RSC Advances, 10 (53), 32058–32068. doi: https://doi.org/10.1039/d0ra04966b
  16. Kumar, A., Singh, D. (2015). A Review on “Weather Surveillance Radar”. International Journal of Advanced Engineering, Management and Science (IJAEMS), 1 (1), 19–22.
  17. Sørensen, P. A., Kiil, S., Dam-Johansen, K., Weinell, C. E. (2009). Anticorrosive coatings: a review. Journal of Coatings Technology and Research, 6 (2), 135–176. doi: https://doi.org/10.1007/s11998-008-9144-2
  18. Hulle, A., Powar, A. (2018). Textiles as EMI Shields. Journal of Textile Science & Engineering, 08 (02). doi: https://doi.org/10.4172/2165-8064.1000347
  19. Paquin, F., Rivnay, J., Salleo, A., Stingelin, N., Silva-Acuña, C. (2015). Multi-phase microstructures drive exciton dissociation in neat semicrystalline polymeric semiconductors. Journal of Materials Chemistry C, 3 (41), 10715–10722. doi: https://doi.org/10.1039/c5tc02043c
  20. Yi, X.-S., Du, S., Zhang, L. (Eds.) (2018). Composite materials engineering. Vol. 2. Springer. doi: https://doi.org/10.1007/978-981-10-5690-1
  21. Wang, C., Murugadoss, V., Kong, J., He, Z., Mai, X., Shao, Q. et. al. (2018). Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon, 140, 696–733. doi: https://doi.org/10.1016/j.carbon.2018.09.006
  22. Imammuddin, A. M., Soeparman, S., Suprapto, W., Sonief, A. A. (2019). Effect of Carbonization Temperature on Electrical Conductivity of Biocarbon Water Hyacinth Composites. International Journal of Control and Automation, 12 (9), 23–30. doi: https://doi.org/10.33832/ijca.2019.12.9.03
  23. Yanti, N. A. (2019). Characteristics of Biocellulose from Sago Liquid Waste with Different Ammonium Sulfate Concentration. International Journal of Ecophysiology, 1 (1), 56–64. doi: https://doi.org/10.32734/ijoep.v1i1.848
  24. Idris, F. M., Hashim, M., Abbas, Z., Ismail, I., Nazlan, R., Ibrahim, I. R. (2016). Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies. Journal of Magnetism and Magnetic Materials, 405, 197–208. doi: https://doi.org/10.1016/j.jmmm.2015.12.070
  25. Ribadeneyra, M. C. (2014). EMI shielding composites based on magnetic nanoparticles and nanocarbons. Universidad Carlos III de Madrid, 223. Available at: https://core.ac.uk/download/pdf/30047274.pdf
  26. Kim, S.-Y., Kim, S.-S. (2018). Design of Radar Absorbing Structures Utilizing Carbon-Based Polymer Composites. Polymers and Polymer Composites, 26 (1), 105–110. doi: https://doi.org/10.1177/096739111802600113
  27. Liu, S.-T., Chen, X.-G., Zhang, A.-B., Yan, K.-K., Ye, Y. (2014). Electromagnetic Performance of Rice Husk Ash. BioResources, 9 (2). doi: https://doi.org/10.15376/biores.9.2.2328-2340
  28. Thomassin, J.-M., Jérôme, C., Pardoen, T., Bailly, C., Huynen, I., Detrembleur, C. (2013). Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Materials Science and Engineering: R: Reports, 74 (7), 211–232. doi: https://doi.org/10.1016/j.mser.2013.06.001
  29. Dai, B., Ren, Y., Wang, G., Ma, Y., Zhu, P., Li, S. (2013). Microstructure and dielectric properties of biocarbon nanofiber composites. Nanoscale Research Letters, 8 (1). doi: https://doi.org/10.1186/1556-276x-8-293
  30. Pawar, S. P., Gandi, M., Bose, S. (2016). High performance electromagnetic wave absorbers derived from PC/SAN blends containing multiwall carbon nanotubes and Fe3O4 decorated onto graphene oxide sheets. RSC Advances, 6 (44), 37633–37645. doi: https://doi.org/10.1039/c5ra25435c
  31. Salas-Ruiz, A., del Mar Barbero-Barrera, M., Ruiz-Téllez, T. (2019). Microstructural and Thermo-Physical Characterization of a Water Hyacinth Petiole for Thermal Insulation Particle Board Manufacture. Materials, 12 (4), 560. doi: https://doi.org/10.3390/ma12040560
  32. Frederika Rumapar, K., Rumhayati, B., Triandi Tjahjanto, R. (2014). Adsorption of Lead and Copper Using Water Hyacinth Compost (Eichornia Crassipes). The Journal of Pure and Applied Chemistry Research, 3 (1), 27–34. doi: https://doi.org/10.21776/ub.jpacr.2014.003.01.160
  33. González, M., Mokry, G., de Nicolás, M., Baselga, J., Pozuelo, J. (2016). Carbon Nanotube Composites as Electromagnetic Shielding Materials in GHz Range. Carbon Nanotubes - Current Progress of Their Polymer Composites. doi: https://doi.org/10.5772/62508

Downloads

Published

2021-02-10

How to Cite

Imammuddin, A. M., Suparman, S., Suprapto, W., & Sonief, A. A. (2021). An analysis of effect of water hyacinth carbonization temperature on fabrication and EMI shielding radar. Eastern-European Journal of Enterprise Technologies, 1(6 (109), 6–14. https://doi.org/10.15587/1729-4061.2021.224219

Issue

Section

Technology organic and inorganic substances