A study of bioethanol fuel characteristics in the combustion chamber of gasoline engine using magnetization technology

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.224235

Abstract

Bioethanol is a renewable energy that can replace gasoline, which will run out in the future. This study investigates the influence of magnetization of bioethanol fuel on the fuel combustion temperature in the combustion chamber of a gasoline motor. The fuel used is bioethanol with a composition of E0 (pure gasoline), E10 (10 % bioethanol+90 % gasoline), E20 (20 % bioethanol+80 % gasoline), E30 (30 % bioethanol+70 % gasoline), E40 (40 % bioethanol+60 % gasoline). The fuel passed through the magnet with a magnetic variation of 647.15 Gauss, 847.25 Gauss, 1419.57 Gauss. The temperature sensor used is a K-type thermocouple. The temperature sensor was inserted in the combustion chamber to measure the combustion chamber temperature. The thermocouple data were recorded in Microsoft Excel on a computer using the LabVIEW program via NI-USB 9213 interface. The temperature data recorded is 400 data/second.  The results obtained without exposure to the magnetic field, the lowest peak temperature of 577.1998 °C at E40 and the highest peak temperature of 582.1786 °C at E0. The higher the bioethanol content, the lower the temperature of fuel combustion to the low bioethanol viscosity. The increasing magnetic field strength will increase the combustion temperature; hence the fuel burned quickly and the combustion process is more perfect. The result obtained with the magnetic field exposure, the lowest peak temperature of 577.8347 °C is at E40. The highest peak temperature of 587.36 °C is at E0. The use of a magnetic field in the bioethanol fuel mixture can increase the combustion temperature so that the fuel molecules move freely and the fuel is more easily mixed with oxygen. As more fuel is burned, the combustion of the fuel becomes complete

Author Biographies

Andi Ulfiana, Politeknik Negeri Jakarta

Master of Instrumentation Physics

Department of Mechanical Engineering

Tatun Hayatun Nufus, Politeknik Negeri Jakarta

Doctor of Energy Conversion

Department of Mechanical Engineering

Emir Ridwan, Politeknik Negeri Jakarta

Master of Mechanical Engineering

Department of Mechanical Engineering

Arifia Ekayuliana, Politeknik Negeri Jakarta

Master of Mechanical Engineering

Department of Mechanical Engineering

Cecep Slamet Abadi, Politeknik Negeri Jakarta

Master of Mechanical Engineering

Department of Mechanical Engineering

Asep Apriana, Politeknik Negeri Jakarta

Master of Information Management

Department of Mechanical Engineering

Iwan Susanto, Politeknik Negeri Jakarta

Doctor of Materials Science and Engineering, Assistance Professor

Department of Mechanical Engineering

References

  1. Sugiarto, B., Setyo Wibowo, C., Zikra, A., Budi, A., Mulya, T. (2018). Characteristic of Gasoline Fuels in Indonesia Blend with Varying Percentages of Bioethanol. E3S Web of Conferences, 67, 02031. doi: https://doi.org/10.1051/e3sconf/20186702031
  2. Khuong, L. S., Masjuki, H. H., Zulkifli, N. W. M., Mohamad, E. N., Kalam, M. A., Alabdulkarem, A. et. al. (2017). Effect of gasoline–bioethanol blends on the properties and lubrication characteristics of commercial engine oil. RSC Advances, 7 (25), 15005–15019. doi: https://doi.org/10.1039/c7ra00357a
  3. Feng, R., Fu, J., Yang, J., Wang, Y., Li, Y., Deng, B. et. al. (2015). Combustion and emissions study on motorcycle engine fueled with butanol-gasoline blend. Renewable Energy, 81, 113–122. doi: https://doi.org/10.1016/j.renene.2015.03.025
  4. Ramadhani Ayu S. N., Sudarmanta, B. (2018). Experimental Study on the Effect of Heating Temperature on Bioethanol Injector to Spray Characteristics for Application on Sinjai-150 Engine. AIP Conference Proceedings, 1983, 020029. doi: https://doi.org/10.1063/1.5046225
  5. Shelke, P. S., Sakhare, N. M., Lahane, S. (2016). Investigation of Combustion Characteristics of a Cottonseed Biodiesel Fuelled Diesel Engine. Procedia Technology, 25, 1049–1055. doi: http://doi.org/10.1016/j.protcy.2016.08.205
  6. Govindasamy, P., Dhandapani, S. (2007). Experimental Investigation of Cyclic Variation of Combustion Parameters in Catalytically Activated and Magnetically Energised Two-stroke SI Engine. Journal of Energy & Environmen, 6, 45–59. Available at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.606.764&rep=rep1&type=pdf
  7. Faris, A. S., Al-Naseri, S. K., Jamal, N., Isse, R., Abed, M., Fouad, Z. et. al. (2012). Effects of Magnetic Field on Fuel Consumption and Exhaust Emissions in Two-Stroke Engine. Energy Procedia, 18, 327–338. doi: https://doi.org/10.1016/j.egypro.2012.05.044
  8. Jain, S., Deshmukh, S. (2012). Experimental Investigation of Magnetic Fuel Conditioner (M.F.C) in I.C. engine. IOSR Journal of Engineering, 02 (07), 27–31. doi: https://doi.org/10.9790/3021-02712731
  9. Singh, K. A., Solanki, R. M. (2015). Investigation of Fuel Saving in Annealing Lehr through Magnetic Material Fuel Saver. International Journal of Science and Research (IJSR), 4 (5), 178–180.
  10. Patel, P. M., Rathod, G. P., Patel, T. M. (2014). Effect of Magnetic Fuel Energizer on Single Cylinder C.I. Engine Performance and Emissions. Mechanical and Automobile Engineering (ICCIET-2014).
  11. Kumar, P. V., Patro, S. K., Pudi, V. (2014). Experimental Study of a Novel Magnetic Fuel Ionization Method in Four Stroke Diesel Engines. International Journal of Mechanical Engineering and Robotics Research, 3 (1), 151–159.
  12. Kolhe, A. V., Shelke, R. E., Khandare, S. S. (2014). Performance, Emission and Combustion Characteristics of a Variable Compression Ratio Diesel Engine Fueled with Karanj Biodiesel and Its Blends. International Journal of Applied Engineering and Technology, 4 (2), 154–163. Available at: https://cibtech.org/J-ENGINEERING-TECHNOLOGY/PUBLICATIONS/2014/Vol-4-No-2/JET-019-014-AJAY-PERFORMANCE-BLENDS.pdf
  13. Chavarria-Hernandez, J. C., Pacheco-Catalán, D. E. (2014). Predicting the kinematic viscosity of FAMEs and biodiesel: Empirical models. Fuel, 124, 212–220. doi: https://doi.org/10.1016/j.fuel.2014.01.105
  14. Nufus, T. H., Sri Lestari, K., Ulfiana, A., Abadi, C. S., Sulistyowati, A., Yuwono, B. et. al. (2019). Study Of Diesel Engine Performance On The Electromagnetic Effect Of Biodiesel (Waste Cooking Oil). Journal of Physics: Conference Series, 1364, 012075. doi: https://doi.org/10.1088/1742-6596/1364/1/012075
  15. Akasyah, M. K., Mamat, R., Abdullah, A., Aziz, A., Yassin, H. M. (2015). Effect of ambient temperature on diesel-engine combustion characteristics operating with alcohol fuel. International Journal of Automotive and Mechanical Engineering, 11, 2373–2382. doi: https://doi.org/10.15282/ijame.11.2015.18.0199
  16. Ozsoysal, O. A. (2010). Effects of combustion efficiency on an Otto cycle. International Journal of Exergy, 7 (2), 232. doi: https://doi.org/10.1504/ijex.2010.031242
  17. Chen, H., Guo, Q., Zhao, X., Xu, M., Ma, Y. (2016). Influence of fuel temperature on combustion and emission of biodiesel. Journal of the Energy Institute, 89 (2), 231–239. doi: https://doi.org/10.1016/j.joei.2015.01.024
  18. Da Costa, R. B. R., Rodrigues Filho, F. A., Moreira, T. A. A., Baêta, J. G. C., Guzzo, M. E., de Souza, J. L. F. (2020). Exploring the lean limit operation and fuel consumption improvement of a homogeneous charge pre-chamber torch ignition system in an SI engine fueled with a gasoline-bioethanol blend. Energy, 197, 117300. doi: https://doi.org/10.1016/j.energy.2020.117300
  19. Mahabadipour, H., Srinivasan, K. K., Krishnan, S. R., Subramanian, S. N. (2018). Crank angle-resolved exergy analysis of exhaust flows in a diesel engine from the perspective of exhaust waste energy recovery. Applied Energy, 216, 31–44. doi: https://doi.org/10.1016/j.apenergy.2018.02.037
  20. Suryantoro, M. T., Setiapraja, H., Yubaidah, S., Sugiarto, B., Mulyono, A. B., Attharik, M. I. et. al. (2019). Effect of temperature to diesel (B0) and biodiesel (B100) fuel deposits forming, 2062, 020044. doi: https://doi.org/10.1063/1.5086591

Downloads

Published

2021-02-10

How to Cite

Ulfiana, A., Nufus, T. H., Ridwan, E., Ekayuliana, A., Abadi, C. S., Apriana, A., & Susanto, I. (2021). A study of bioethanol fuel characteristics in the combustion chamber of gasoline engine using magnetization technology. Eastern-European Journal of Enterprise Technologies, 1(6 (109), 72–76. https://doi.org/10.15587/1729-4061.2021.224235

Issue

Section

Technology organic and inorganic substances