Development of the juice extraction equipment: physico-mathematical model of the processes

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.224986

Keywords:

watermelon, extractor, juice yield, extraction efficiency, extraction losses, juice constant

Abstract

Multifruit juicers are designed, constructed and improved to be able to process pineapples, oranges and watermelons efficiently. Little juice manufacturers need both a small and efficient device for juice extraction for being economically concurrent compared to big corporations. The authors of the represented paper aim to present the experimental device for juice extraction, its effectiveness, and functional. This device was created using the compressive and compressive shear forces conveyed by an auger conveyor system as a working power. The juicer consists of a hopper, a screw conveyor shaft, a filter screen, a juice outlet, gearbox housing, and a motor. The analysis of the component design enabled the authors to use the data in order to identify the sizes, manufacture and assemble the machine. The authors have made a lot of tests to detect the efficiency and functionality of the presented device. Tests of the device productivity were carried out using watermelons loaded into the device both peeled and unpeeled. Percentage of juice yield, juice extraction efficiency and extraction losses were used as performance indicators. Productivity analysis results revealed that a fruit type and peel condition reliably influenced productivity indicators at the value of 1 %. The percentage of juice yield from peeled and unpeeled watermelons constituted 89.5 % and 89.7 %, respectively. Extraction efficiency constituted 96.6 % for peeled watermelons and 97.1 % for unpeeled ones. Extraction losses amounted to 2.9 % and 2.6 % correspondingly. The proposed device is easy to use and maintain, therefore, it will perfectly suit the needs of small fruit juice manufacturers and can help to get economic efficiency to the small manufacture

Author Biographies

Yevgeniy Medvedkov, Almaty Technological University

Doctor of the Technical Science

Department of Mechanization and Automation of Production Processes

Aigerim Nazymbekova, Almaty Technological University

Postgraduate Student

Department of Mechanization and Automation of Production Processes

Dinara Tlevlessova, Almaty Technological University

PhD, Associate Professor

Department of Mechanization and Automation of Production Processes

Mikhail Shaprov, Volgograd State Agricultural University

Doctor of Technical Science, Professor

Department of Engineering and Technology

Ainura Kairbayeva, Almaty Technological University

PhD, Associate Professor

Department of Mechanization and Automation of Production Processes

References

  1. Zhu, D., Kou, C., Wei, L., Xi, P., Changxin, L., Cao, X., Liu, H. (2019). Effects of high pressure homogenization on the stability of cloudy apple juice. IOP Conference Series: Earth and Environmental Science, 358, 022059. doi: http://doi.org/10.1088/1755-1315/358/2/022059
  2. Kozhukhova, M. A. (2007). Poluchenie ovoschnykh sokov i napitkov s ispolzovaniem biotekhnologicheskikh metodov. Izvestiya vysshikh uchebnykh zavedeniy. Pischevaia tekhnologiya, 4, 28–31.
  3. Nemchinova, A. I. (2015). Proizvodstvo sokov na osnove melkoplodnykh iablok Irkutskoi oblasti. Sovremennye tendentsii razvitiya nauki i tekhnologii. Belgorod, 68–73. Available at: https://apni.ru/media/Sb_k-4-2.pdf#page=68
  4. Gutsaliuk, T. G. (2006). Bakhchevodstvo Kazakhstana. Almaty: NIIKOKH, 227.
  5. Altukhova, I. A., Gorina, S. G., Sorochkina, E. M. (2020). Tekhnologiya izgotovleniya soka v domashnikh usloviyakh. Molodezh i nauka. Nizhniy Tagil, 481–484. Available at: http://hdl.handle.net/10995/87401
  6. Tsepliaev, V. A., Abezin, V. G., Skripkin, D. V. (2019). Pat. No. 2677046 C1 RU. Ustanovka dlia bezotkhodnoi pererabotki plodov arbuzov.
  7. Lutsenko, V. P., Toschev, V. P. (2006). Shirokoriadnye posevy arbuzov. Zemledelie, 5, 26–27.
  8. Sokolov, Iu. V. Sokolova I. M., Taranova E. S. (2012). Rannie arbuzy dolzhny byt vysokokachestvennymi. Kartofel i ovoschi, 2, 28–29.
  9. Taranova, E. S. Tiutiuma, N. V. (2012). Fundamentals of the production intensification of melons and gourds in the Lower Volga region. Nizhnego Povolzhia. Teoreticheskie i prikladnye problemy agropromyshlennogo kompleksa, 1, 28–32.
  10. Sharmanov, T. (1996). Kontseptsiya natsionalnoi politiki pitaniya Kazakhstana. Almaty: NIKON, 36.
  11. Glushkovskaia, M., Isaev, B. (2005). Aspekty resheniya problemy iododefitsita i zhelezodefitsitnoi anemii. Zhasstar, 4, 1–6.
  12. Saparbekova, A. A., Shin, Z. A., Kantureeva, G. O. (2010). Pat. No. 68770 KAZ. Konservirovannii sok. Published: 22.06.2010
  13. Korotenko, V. A. (2014). Fizicheskie osnovy razrabotki neftianykh mestorozhdenii i metodov povysheniia nefteotdachi. Tiumen: TiumGNGU, 104.
  14. Rashidi, M., Keshavarzpour, F. (2007). Effect of different tillage methods on soil physical properties and crop yield of watermelon (Citrullus Vulgaris). ARPN Journal of Agricultural and Biological Science, 2 (6), 1–6.
  15. Dospekhov, B. A. (2017). Metodika polevogo opyta. Moscow: Kolos, 416.
  16. Nwaeche, C. F., Fagunwa, A. O., Olokoshe, A. A., Aderowmu, A. E., Uzondu, V. C. T., Salami, O., Asiru, W. B. (2019). Comparative Studies on Additive and Subtractive Manufacturing in Nigeria Case Study: Helical Gear in a Juice Extractor. Asian Journal of Advanced Research and Reports, 7 (3), 1–11. doi: http://doi.org/10.9734/ajarr/2019/v7i330179
  17. Bykovskii, Iu. A., Sincha, K. P., Varivoda, O. P., Koleboshina, T. G., Kobkova, G. E. (2002). Rekomendatsii po vyraschivaniu bakhchevykh kultur v Volgogradskoi oblasti. Volgograd: Kursiv, 50.
  18. Shaprov, M. N., Semin, D. V., Sadovnikov, M. A., Kuznetsov A. V. (2011). Melons and gourds fruits strength characteristics definition. Bulletin of the Nizhnevolzhsky agro-university complex, 4 (24), 219–226.
  19. Selektsiya i agrotekhnika bakhchevykh kultur (2005). Moscow, 176.
  20. Filatov, V. I. (Ed.) (2017). Agrobiologicheskie osnovy proizvodstva, khraneniia i pererabotki produktsii rastenievodstva. Moscow: Kolos, 680–710.
  21. Aremu, A. K., Ogunlade, C. A. (2016). Development and evaluation of a multipurpose fruit juice extractor. New York Science Journal, 9 (6), 7–14.
  22. Aviara, N. A., Lawal, A. A., Nyam, D. S., Bamisaye, J. (2013). Development and performance evaluation of a multi-purpose juice extractor. Global Journal of Engineering, Design and Technology, 2 (2), 16–21.
  23. Bates, R. P., Morris, J. R., Crandall, P. G. (2001). Principles and practices of small- and medium- scale fruit juice processing. Rome: FAO, Agricultural Services Bulletin.
  24. Hall, A. S., Holowenko, A. R., Laughlin, H. G. (1981). Theory and Problems of Machine Design. Schaum’s outline series. New York: McGraw-Hill Book Co., 344.
  25. Ogunsina, B. S., Lucas, E. B. (2008). Development of a manuallyoperated cashew juice extractor. Agricultural Engineering International: The CIGR E-journal Manuscript, 10, 1–19.
  26. Oguntuyi, V. F. (2013). Evaluation of development and performance of a manually-operated orange juice extracting machine. International Journal of Research Development, 2 (1), 257–264.
  27. Olaniyan, A. M. (2017). Development of a small scale orange juice extractor. Journal of Science and Technology, 47 (1), 105–108. doi: http://doi.org/10.1007/s13197-010-0002-8
  28. Ergonomic design for people at work. Vol. 2. (1981). Eastman Kodak Company, Van Nostrand Reinhold, 624.
  29. Lymar, A. O. (Ed.) (2000). Bakhchevye kultury. Kyiv: Agrarna nauka, 330.
  30. Ivanova, E. I. Machulkina, V. A., Sannikova, T. A. (2003). Likvidatsiya poter – resursosberezhenie. Resursosberegaiuschie osnovy oroshaemogo zemledeliya, 3, 121–146.
  31. Abulude, F. O., Elemide, A. O., Ogunkoya, M. O., Adesanya, W. O. (2007). Design and performance evaluation of a juice extractor constructed in Nigeria. Research Journal of Applied Sciences, 2 (1), 31–34.
  32. Adebayo, A. A., Unigbe, O. M., Atanda, E. O. (2014). Fabrication and performance evaluation of a portable motorized pineapple juice extractor. Innovative Systems Design and Engineering, 8 (5), 22–29.
  33. Sylvester, A. A., Abugh, A. (2012). Design and construction of an orange juice extractor. Proceedings of the World Congress on Engineering. London, 3.
  34. Zhestkova, I. N. (Ed.) (2001). Handbook of the designer-mechanical engineer. Vol. 1. Moscow: Mechanical engineering, 920.
  35. Aderiye, B. I., David, O. M., Fagbohun, E. D., Faleye, J., Olajide, O. M. (2020). Immunomodulatory and phytomedicinal properties of watermelon juice and pulp (Citrullus lanatus Linn): A review. GSC Biological and Pharmaceutical Sciences, 11 (2), 153–165. doi: http://doi.org/10.30574/gscbps.2020.11.2.0079
  36. Costa, H. C. B., Silva, D. O., Vieira, L. G. M. (2018). Physical properties of açai-berry pulp and kinetics study of its anthocyanin thermal degradation. Journal of Food Engineering, 239, 104–113. doi: http://doi.org/10.1016/j.jfoodeng.2018.07.007
  37. Madoumier, M., Trystram, G., Sébastian, P., Collignan, A. (2019). Towards a holistic approach for multi-objective optimization of food processes: A critical review. Trends in Food Science & Technology, 86, 1–15. doi: http://doi.org/10.1016/j.tifs.2019.02.002
  38. Aviara, N. A., Lawa, A. A., Nyam, D. S., Bamisaye, J. (2013). Development and performance evaluation of a multi-fruit juice extractor. Global Journal of Engineering, Design and Technology, 2 (2), 16–21.
  39. Aremu, A. K., Ogunlade, C. A. (2016). Development and Evaluation of a Multipurpose Juice Extractor. New York Science Journal, 9 (6), 7–14.
  40. Kumaran, G. S. (2015). Development of a watermelon (Citrullus lanatus) Seed extractor. Benglaur: University of Agrocultural Sciences GKVK, 95. Available at: http://krishikosh.egranth.ac.in/handle/1/5810028016
  41. Shaprov, M. N., Semin, D. V., Sadovnikov, M. A., Kuznetsov A. V. (2008). Opredelenie prochnostnykh kharakteristik plodov bakhchevykh kultur. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa, 4, 146–150.
  42. Shaprov, M. N., Semin, D. V., Sadovnikov, M. A., Kuznetsov, A. V. (2010). Opredelenie prochnostnykh kharakteristik plodov bakhchevykh kultur. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professionalnoe obrazovanie, 1, 140–145.

Downloads

Published

2021-02-27

How to Cite

Medvedkov, Y., Nazymbekova, A. ., Tlevlessova, D. ., Shaprov, M. ., & Kairbayeva, A. . (2021). Development of the juice extraction equipment: physico-mathematical model of the processes. Eastern-European Journal of Enterprise Technologies, 1(11 (109), 14–24. https://doi.org/10.15587/1729-4061.2021.224986

Issue

Section

Technology and Equipment of Food Production