Effect of target-substrate distance on thickness and hardness of carbon thin films on SKD11 steel using target material from battery carbon rods

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.225376

Keywords:

target-substrate distance, SKD11 steel, sputtering, hardness, thickness, carbon thin films

Abstract

Carbon thin films on SKD11 steel were deposited by 40 kHz frequency plasma sputtering technique using a waste of battery carbon rods in argon plasma, and their mechanical properties were investigated by various target-substrate distances (1 cm, 1.7 cm, 2 cm, and 2.4 cm). The power used is 340 watts, the vacuum time is 90 minutes, and the gas flow rate is 80 ml/minute. The deposition time of carbon in plasma sputtering is 120 minutes with the initial temperature (temperature during vacuum) of 28 oC and the final temperature (the temperature after plasma sputtering) is 300 oC. The hardness value of SKD11 steel deposited with carbon thin films on SKD11 with target-substrate distance was tested using the Vickers microhardness test. Testing the thickness of the carbon thin films on the SKD11 steel substrate was carried out using a Nikon type 59520 optical microscope. Qualitative analysis of the thickness of the carbon thin films on the SKD11 steel substrate at a scale of 20 μm is shown by an optical microscope. Qualitatively, the thin film at a distance of 1.7 cm looks the brightest and thickest than other distance variations. Based on the Vickers microhardness test and Nikon type 59520 optical microscope, at the distance of 1 cm to 1.7 cm, the average thickness and hardness increased from 10,724 μm (286.6 HV) to 13,332 μm (335.9 HV). Furthermore, at the variation of the distance from 1.7 cm to 2.4 cm, the average thickness and hardness continued to decrease from 13.332 μm (335.9 HV) to 7.257 μm (257.3 HV). The possibility of interrupting atoms colliding with argon atoms in inert conditions increases at a long distance, thus causing the deposition flux on the SKD11 steel substrate to decrease

Author Biographies

Aladin Eko Purkuncoro, Institut Teknologi Nasional Malang

Master Degree of Mechanical Engineering

Department of Mechanical Engineering

Rudy Soenoko, Brawijaya University

Professor

Department of Mechanical Engineering

Dionysius Joseph Djoko Herry Santjojo, Brawijaya University

Assistant Professor

Department of Physical

Yudy Surya Irawan, Brawijaya University

Assistant Professor

Department of Mechanical Engineering

References

  1. Purkuncoro, A. E., Santjojo, D. J. D. H., Irawan, Y. S., Soenoko, R. (2019). Deposition of Carbon Thin Film by Means of a Low-Frequency Plasma Sputtering Using Battery Carbon Rods as a Target. IOP Conference Series: Materials Science and Engineering, 515, 012041. doi: http://doi.org/10.1088/1757-899x/515/1/012041
  2. Chu, P. K., Li, L. (2006). Characterization of amorphous and nanocrystalline carbon films. Materials Chemistry and Physics, 96 (2-3), 253–277. doi: http://doi.org/10.1016/j.matchemphys.2005.07.048
  3. Kong, J. H., Sung, J. H., Kim, S. G., Kim, S. W. (2006). Microstructural changes of SKD11 steel during carbide dispersion carburizing and subzero treatment. Solid State Phenomena, 118, 115–120. doi: http://doi.org/10.4028/www.scientific.net/SSP.118.115
  4. Wen, F., Liu, J., Xue, J. (2017). The Studies of Diamond-Like Carbon Films as Biomaterials. Colloid and Surface Science, 2 (3), 81–95. Available at: http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=607&doi=10.11648/j.css.20170203.11
  5. Gałuszka, R., Madej, M., Ozimina, D., Krzyszkowski, A., Gałuszka, G. (2017). The Characterisation of the Microstructure and Mechanical Properties of Diamond - Like Carbon (Dlc) for Endoprosthesis. Metalurgija, 56 (1-2), 195–198.
  6. Calik, A., Duzgun, A., Sahin, O., Ucar, N. (2010). Effect of carbon content on the mechanical properties of medium carbon steels. Verlag der Zeitschrift für Naturforschung, 65 (5), 468–472. doi: https://doi.org/10.1515/zna-2010-0512
  7. Tang, D. W., Wang, C. Y., Hu, Y. N., Song, Y. X. (2009). Constitutive equation for hardened SKD11 steel at high temperature and high strain rate using the SHPB technique. Fourth International Conference on Experimental Mechanics. doi: http://doi.org/10.1117/12.851262
  8. Iwasaki, M., Hirata, A. (2005). Deposition of high-density amorphous carbon films by sputtering in electron-beam-excited plasma. New Diamond and Frontier Carbon Technology, 15 (3), 139–149.
  9. Plasma Technology (2007). Diener electronic GmbH + Co. KG. Germany, 83.
  10. Vijaya, G., Muralidhar Singh, M., Krupashankara, M. S., Kulkarni, R. S. (2016). Effect of Argon Gas Flow Rate on the Optical and Mechanical Properties of Sputtered Tungsten Thin Film Coatings. IOP Conference Series: Materials Science and Engineering, 149, 012075. doi: http://doi.org/10.1088/1757-899X/149/1/012075
  11. Hammadi, O. A. Fundamentals of Plasma Sputtering. doi: http://doi.org/10.13140/RG.2.1.3855.5605
  12. Mróz, W., Burdyńska, S., Prokopiuk, A., Jedyński, M., Budner, B., Korwin-Pawlowski, M. L. (2009). Characteristics of Carbon Films Deposited by Magnetron Sputtering. Acta Physica Polonica A, 116, S-120–S-122. doi: https://doi.org/10.12693/aphyspola.116.s-120
  13. Abdelrahman, M. M. (2015). Study of Plasma and Ion Beam Sputtering Processes. Journal of Physical Science and Application, 5 (2), 128–142. doi: https://doi.org/10.17265/2159-5348/2015.02.007
  14. Dai, H. Y., Du, J., Zhan, C. (2015). Role of target-substrate distance on the structural, mechanical and electrical properties of amorphous carbon films. Journal of Materials Science: Materials in Electronics, 26 (9), 6552–6556. doi: https://doi.org/10.1007/s10854-015-3252-4
  15. Grill, A. (2009). Fundamentals of Plasma. Cold Plasma Materials Fabrication. doi: https://doi.org/10.1109/9780470544273.ch1
  16. De la Concepción, V. L., Lorusso, H. N., Svoboda, H. G. (2015). Effect of Carbon Content on Microstructure and Mechanical Properties of Dual Phase Steels. Procedia Materials Science, 8, 1047–1056. doi: https://doi.org/10.1016/j.mspro.2015.04.167
  17. General Catalog of YSS TOOL STEELS (2015). Hitachi Met. Available at: https://www.hitachi-metals.co.jp/e/products/auto/ml/pdf/yss_tool_steels_d.pdf

Downloads

Published

2021-02-26

How to Cite

Purkuncoro, A. E. ., Soenoko, R. ., Santjojo, D. J. D. H., & Irawan, Y. S. . (2021). Effect of target-substrate distance on thickness and hardness of carbon thin films on SKD11 steel using target material from battery carbon rods. Eastern-European Journal of Enterprise Technologies, 1(12 (109), 22–28. https://doi.org/10.15587/1729-4061.2021.225376

Issue

Section

Materials Science