Estimating parameters of linear regression with an exponential power distribution of errors by using a polynomial maximization method
DOI:
https://doi.org/10.15587/1729-4061.2021.225525Keywords:
regression, exponential power distribution, parameter estimation, moments, polynomial maximization methodAbstract
This paper considers the application of a method for maximizing polynomials in order to find estimates of the parameters of a multifactorial linear regression provided the random errors of the regression model follow an exponential power distribution. The method used is conceptually close to a maximum likelihood method because it is based on the maximization of selective statistics in the neighborhood of the true values of the evaluated parameters. However, in contrast to the classical parametric approach, it employs a partial probabilistic description in the form of a limited number of statistics of higher orders.
The adaptive algorithm of statistical estimation has been synthesized, which takes into consideration the properties of regression residues and makes it possible to find refined values for the estimates of the parameters of a linear multifactorial regression using the numerical Newton-Rafson iterative procedure. Based on the apparatus of the quantity of extracted information, the analytical expressions have been derived that make it possible to analyze the theoretical accuracy (asymptotic variances) of estimates for the method of maximizing polynomials depending on the magnitude of the exponential power distribution parameters.
Statistical modeling was employed to perform a comparative analysis of the variance of estimates obtained using the method of maximizing polynomials with the accuracy of classical methods: the least squares and maximum likelihood. Regions of the greatest efficiency for each studied method have been constructed, depending on the magnitude of the parameter of the form of exponential power distribution and sample size. It has been shown that estimates from the polynomial maximization method may demonstrate a much lower variance compared to the estimates from a least-square method. And, in some cases (for flat-topped distributions and in the absence of a priori information), may exceed the estimates from the maximum likelihood method in terms of accuracy
References
- Subbotin, M. T. (1923). On the law of frequency of error. Mat. Sb., 31 (2), 296–301.
- Varanasi, M. K., Aazhang, B. (1989). Parametric generalized Gaussian density estimation. The Journal of the Acoustical Society of America, 86 (4), 1404–1415. doi: https://doi.org/10.1121/1.398700
- Nadarajah, S. (2005). A generalized normal distribution. Journal of Applied Statistics, 32 (7), 685–694. doi: https://doi.org/10.1080/02664760500079464
- Giller, G. L. (2005). A Generalized Error Distribution. SSRN Electronic Journal. doi: https://doi.org/10.2139/ssrn.2265027
- Krasilnikov, A. I. (2019). Family of Subbotin Distributions and its Classification. Electronic modeling, 41 (3), 15–32. doi: https://doi.org/10.15407/emodel.41.03.015
- Hassan, M. Y., Hijazi, R. H. (2010). A bimodal exponential power distribution. Pakistan Journal of Statistics, 26 (2), 379–396.
- Komunjer, I. (2007). Asymmetric power distribution: Theory and applications to risk measurement. Journal of Applied Econometrics, 22 (5), 891–921. doi: https://doi.org/10.1002/jae.961
- Zhu, D., Zinde-Walsh, V. (2009). Properties and estimation of asymmetric exponential power distribution. Journal of Econometrics, 148 (1), 86–99. doi: https://doi.org/10.1016/j.jeconom.2008.09.038
- Crowder, G. E., Moore, A. H. (1983). Adaptive Robust Estimation Based on a Family of Generalized Exponential Power Distributions. IEEE Transactions on Reliability, R-32 (5), 488–495. doi: https://doi.org/10.1109/tr.1983.5221739
- Mineo, A. M. (2003). On the estimation of the structure parameter of a normal distribution of order p. Statistica, 63(1), 109–122. doi: https://doi.org/10.6092/issn.1973-2201/342
- Olosunde, A. A., Soyinka, A. T. (2019). Interval Estimation for Symmetric and Asymmetric Exponential Power Distribution Parameters. Journal of the Iranian Statistical Society, 18 (1), 237–252. doi: https://doi.org/10.29252/jirss.18.1.237
- Pogány, T. K., Nadarajah, S. (2010). On the characteristic function of the generalized normal distribution. Comptes Rendus Mathematique, 348 (3-4), 203–206. doi: https://doi.org/10.1016/j.crma.2009.12.010
- Novitskiy, P. V., Zograf, I. A. (1991). Otsenka pogreshnostey rezul'tatov izmereniy. Leningrad: Izdatel'stvo Energoatomizdat, 304.
- Lindsey, J. K. (1999). Multivariate Elliptically Contoured Distributions for Repeated Measurements. Biometrics, 55 (4), 1277–1280. doi: https://doi.org/10.1111/j.0006-341x.1999.01277.x
- Sheluhin, O. I. (1999). Negaussovskie protsessy v radiotehnike. Moscow: Radio i svyaz', 310.
- Sharifi, K., Leon-Garcia, A. (1995). Estimation of shape parameter for generalized Gaussian distributions in subband decompositions of video. IEEE Transactions on Circuits and Systems for Video Technology, 5 (1), 52–56. doi: https://doi.org/10.1109/76.350779
- Dominguez-Molina, J. A., Gonzalez-Farias, G., Rodriguez-Dagnino, R. M. (2001). A practical procedure to estimate the shape parameter in the generalized Gaussian distribution. Available at: http://www.cimat.mx/reportes/enlinea/I-01-18_eng.pdf
- Saatci, E., Akan, A. (2010). Respiratory parameter estimation in non-invasive ventilation based on generalized Gaussian noise models. Signal Processing, 90 (2), 480–489. doi: https://doi.org/10.1016/j.sigpro.2009.07.015
- Olosunde, A. A. (2013). On exponential power distribution and poultry feeds data: a case study. Journal of The Iranian Statistical Society, 12 (2), 253–269.
- Giacalone, M. (2020). A combined method based on kurtosis indexes for estimating p in non-linear Lp-norm regression. Sustainable Futures, 2, 100008. doi: https://doi.org/10.1016/j.sftr.2020.100008
- Chan, J. S. K., Choy, S. T. B., Walker, S. G. (2021). On The Estimation Of The Shape Parameter Of A Symmetric Distribution. Journal of Data Science, 18 (1), 78–100. doi: https://doi.org/10.6339/jds.202001_18(1).0004
- Olosunde, A. A., Adegoke, A. M. (2016). Goodness-of-fit-test for Exponential Power Distribution. American Journal of Applied Mathematics and Statistics, 4 (1), 1–8.
- Giacalone, M., Panarello, D. (2020). Statistical hypothesis testing within the Generalized Error Distribution: Comparing the behavior of some nonparametric techniques. Book of Short Papers SIS 2020, 1338–1343.
- Johnson, M. E. (1979). Computer Generation of the Exponential Power Distributions. Journal of Statistical Computation and Simulation, 9, 239–240.
- Nardon, M., Pianca, P. (2009). Simulation techniques for generalized Gaussian densities. Journal of Statistical Computation and Simulation, 79 (11), 1317–1329. doi: https://doi.org/10.1080/00949650802290912
- Kalke, S., Richter, W.-D. (2013). Simulation of the p-generalized Gaussian distribution. Journal of Statistical Computation and Simulation, 83 (4), 641–667. doi: https://doi.org/10.1080/00949655.2011.631187
- Mineo, A. M., Ruggieri, M. (2005). A Software Tool for the Exponential Power Distribution: The normalp Package. Journal of Statistical Software, 12 (4). doi: https://doi.org/10.18637/jss.v012.i04
- Rao, C. R. (1945). Information and the accuracy attainable in the estimation of statistical parameters. Bulletin of Calcutta Mathematical Society, 37, 81–89.
- Koenker, R., Bassett, G. (1978). Regression Quantiles. Econometrica, 46 (1), 33–50. doi: https://doi.org/10.2307/1913643
- Barrodale, I., Roberts, F. D. K. (1973). An Improved Algorithm for Discrete $l_1 $ Linear Approximation. SIAM Journal on Numerical Analysis, 10 (5), 839–848. doi: https://doi.org/10.1137/0710069
- Zeckhauser, R., Thompson, M. (1970). Linear Regression with Non-Normal Error Terms. The Review of Economics and Statistics, 52 (3), 280–286. doi: https://doi.org/10.2307/1926296
- Mineo, A. (1989). The Norm-P Estimation of Location, Scale and Simple Linear Regression Parameters. Lecture Notes in Statistics, 222–233. doi: https://doi.org/10.1007/978-1-4612-3680-1_26
- Agrò, G. (1992). Maximum likelihood and Lp-norm estimators. Statistica Applicata, 4 (2), 171–182.
- Tarassenko, P. F., Tarima, S. S., Zhuravlev, A. V., Singh, S. (2014). On sign-based regression quantiles. Journal of Statistical Computation and Simulation, 85 (7), 1420–1441. doi: https://doi.org/10.1080/00949655.2013.875176
- Yang, T., Gallagher, C. M., McMahan, C. S. (2018). A robust regression methodology via M-estimation. Communications in Statistics - Theory and Methods, 48 (5), 1092–1107. doi: https://doi.org/10.1080/03610926.2018.1423698
- Galea, M., Paula, G. A., Bolfarine, H. (1997). Local influence in elliptical linear regression models. Journal of the Royal Statistical Society: Series D (The Statistician), 46 (1), 71–79. doi: https://doi.org/10.1111/1467-9884.00060
- Liu, S. (2002). Local influence in multivariate elliptical linear regression models. Linear Algebra and Its Applications, 354 (1-3), 159–174. doi: https://doi.org/10.1016/s0024-3795(01)00585-7
- Ganguly, S. S. (2014). Robust Regression Analysis for Non-Normal Situations under Symmetric Distributions Arising In Medical Research. Journal of Modern Applied Statistical Methods, 13 (1), 446–462. doi: https://doi.org/10.22237/jmasm/1398918480
- Bartolucci, F., Scaccia, L. (2005). The use of mixtures for dealing with non-normal regression errors. Computational Statistics & Data Analysis, 48 (4), 821–834. doi: https://doi.org/10.1016/j.csda.2004.04.005
- Seo, B., Noh, J., Lee, T., Yoon, Y. J. (2017). Adaptive robust regression with continuous Gaussian scale mixture errors. Journal of the Korean Statistical Society, 46 (1), 113–125. doi: https://doi.org/10.1016/j.jkss.2016.08.002
- Tiku, M. L., Islam, M. Q., Selçuk, A. S. (2001). Nonnormal Regression. II. Symmetric Distributions. Communications in Statistics - Theory and Methods, 30 (6), 1021–1045. doi: https://doi.org/10.1081/sta-100104348
- Andargie, A. A., Rao, K. S. (2013). Estimation of a linear model with two-parameter symmetric platykurtic distributed errors. Journal of Uncertainty Analysis and Applications, 1 (1). doi: https://doi.org/10.1186/2195-5468-1-13
- Stone, C. J. (1975). Adaptive Maximum Likelihood Estimators of a Location Parameter. The Annals of Statistics, 3 (2), 267–284. doi: ttps://doi.org/10.1214/aos/1176343056
- Montfort, K., Mooijaart, A., Leeuw, J. (1987). Regression with errors in variables: estimators based on third order moments. Statistica Neerlandica, 41 (4), 223–238. doi: https://doi.org/10.1111/j.1467-9574.1987.tb01215.x
- Dagenais, M. G., Dagenais, D. L. (1997). Higher moment estimators for linear regression models with errors in the variables. Journal of Econometrics, 76 (1-2), 193–221. doi: https://doi.org/10.1016/0304-4076(95)01789-5
- Cragg, J. G. (1997). Using Higher Moments to Estimate the Simple Errors-in-Variables Model. The RAND Journal of Economics, 28, S71. doi: https://doi.org/10.2307/3087456
- Gillard, J. (2014). Method of Moments Estimation in Linear Regression with Errors in both Variables. Communications in Statistics - Theory and Methods, 43 (15), 3208–3222. doi: https://doi.org/10.1080/03610926.2012.698785
- Wang, L., Leblanc, A. (2007). Second-order nonlinear least squares estimation. Annals of the Institute of Statistical Mathematics, 60 (4), 883–900. doi: https://doi.org/10.1007/s10463-007-0139-z
- Chen, X., Tsao, M., Zhou, J. (2010). Robust second-order least-squares estimator for regression models. Statistical Papers, 53 (2), 371–386. doi: https://doi.org/10.1007/s00362-010-0343-4
- Kim, M., Ma, Y. (2011). The efficiency of the second-order nonlinear least squares estimator and its extension. Annals of the Institute of Statistical Mathematics, 64 (4), 751–764. doi: https://doi.org/10.1007/s10463-011-0332-y
- Huda, S., Mukerjee, R. (2016). Optimal designs with string property under asymmetric errors and SLS estimation. Statistical Papers, 59 (3), 1255–1268. doi: https://doi.org/10.1007/s00362-016-0819-y
- Kunchenko, Yu. P., Lega, Yu. G. (1991). Otsenka parametrov sluchaynyh velichin metodom maksimizatsii polinoma. Kyiv: Naukova dumka, 180.
- Zabolotnii, S., Warsza, Z. L., Tkachenko, O. (2018). Polynomial Estimation of Linear Regression Parameters for the Asymmetric PDF of Errors. Advances in Intelligent Systems and Computing, 758–772. doi: https://doi.org/10.1007/978-3-319-77179-3_75
- Zabolotnii, S. W., Warsza, Z. L., Tkachenko, O. (2019). Estimation of Linear Regression Parameters of Symmetric Non-Gaussian Errors by Polynomial Maximization Method. Advances in Intelligent Systems and Computing, 636–649. doi: https://doi.org/10.1007/978-3-030-13273-6_59
- Warsza, Z. (2017). Ocena niepewności pomiarów o rozkładzie trapezowym metodą maksymalizacji wielomianu. Przemysł Chemiczny, 1 (12), 68–71. doi: https://doi.org/10.15199/62.2017.12.6
- Warsza, Z. L., Zabolotnii, S. W. (2017). A Polynomial Estimation of Measurand Parameters for Samples of Non-Gaussian Symmetrically Distributed Data. Advances in Intelligent Systems and Computing, 468–480. doi: https://doi.org/10.1007/978-3-319-54042-9_45
- Zabolotnii, S. V., Kucheruk, V. Yu., Warsza, Z. L., Khassenov, А. K. (2018). Polynomial Estimates of Measurand Parameters for Data from Bimodal Mixtures of Exponential Distributions. Vestnik Karagandinskogo universiteta, 2 (90), 71–80.
- Warsza, Z. L., Zabolotnii, S. (2018). Estimation of Measurand Parameters for Data from Asymmetric Distributions by Polynomial Maximization Method. Advances in Intelligent Systems and Computing, 746–757. doi: https://doi.org/10.1007/978-3-319-77179-3_74
- Zabolotnii, S. W., Warsza, Z. L. (2016). Semi-parametric Estimation of the Change-Point of Parameters of Non-gaussian Sequences by Polynomial Maximization Method. Advances in Intelligent Systems and Computing, 903–919. doi: https://doi.org/10.1007/978-3-319-29357-8_80
- Zabolotnii, S. V., Chepynoha, A. V., Bondarenko, Y. Y., Rud, M. P. (2018). Polynomial parameter estimation of exponential power distribution data. Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 75, 40–47, 75, 40–47. doi: https://doi.org/10.20535/radap.2018.75.40-47
- Zabolotnii, S. V., Chepynoha, A. V., Chorniy, A. M., Honcharov, A. V. (2020). Сomparative Analysis of Polynomial Maximization and Maximum Likelihood Estimates for Data with Exponential Power Distribution. Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 82, 44–51. doi: https://doi.org/10.20535/radap.2020.82.44-51
- Liu, M., Bozdogan, H. (2008). Multivariate regression models with power exponential random errors and subset selection using genetic algorithms with information complexity. European Journal of Pure and Applied Mathematics, 1 (1), 4–37. Available at: https://www.researchgate.net/publication/264947828_Multivariate_regression_models_with_power_exponential_random_errors_and_subset_selection_using_genetic_algorithms_with_information_complexity
- Atsedeweyn, A. A., Srinivasa Rao, K. (2013). Linear regression model with new symmetric distributed errors. Journal of Applied Statistics, 41 (2), 364–381. doi: https://doi.org/10.1080/02664763.2013.839638
- Ferreira, M. A., Salazar, E. (2014). Bayesian reference analysis for exponential power regression models. Journal of Statistical Distributions and Applications, 1 (1), 12. doi: https://doi.org/10.1186/2195-5832-1-12
- Levine, D. M., Krehbiel, T. C., Berenson, M. L. (2000). Business Statistics: A First Course. Prentice-Hall.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Сергей Васильевич Заболотный, Владислав Игоревич Хотунов, Анатолий Владимирович Чепинога, Александр Николаевич Ткаченко
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.