Methods of constructing models and optimizing the operating modes of a chemical engineering system for the production of benzene in a fuzzy environment

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.226167

Keywords:

mathematical modeling, fuzzy information, chemical engineering system, optimality principles, heuristic algorithm

Abstract

The study object: the chemical engineering system for production of benzene and optimization of the system operation modes based on modeling. An approach to the effective solution of problems of optimization of operating modes of real chemical engineering systems was proposed. Since such systems are usually multicriterial and characterized by the fuzziness of initial information, an approach to the development of their models and optimization of their operating modes in a fuzzy environment was proposed. The essence of this approach lies in the construction of mathematical models and optimization of system operation modes based on the system analysis methodology using available information of deterministic, statistical, and fuzzy nature. Statements of the problems of optimization by means of chemical engineering systems in a fuzzy environment have been obtained by modifying various principles of optimality for working in a fuzzy environment. Based on a modification of the principles of maximin and Pareto optimality, a heuristic algorithm for solving the formulated optimization problem was proposed based on the use of knowledge and experience of decision-makers. The proposed method of model construction and an optimization algorithm were implemented in practice when constructing models of benzene and rectification columns of a chemical engineering system of production of benzene when formulating and solving the problem of optimizing their operation modes in a fuzzy environment. Analysis and comparison of optimization results allow us to conclude about the effectiveness of the proposed fuzzy approach to solving optimization problems in a fuzzy environment. As a result of optimization of the benzene production process, the benzene yield increased by 1.45 thousand t or by 1.1 %, the raffinate output volume increased by 0.4 thousand t in conditions of upholding constraints on benzene quality. The proposed approach makes it possible to assess the degree of upholding of fuzzy constraints

Author Biographies

Batyr Orazbayev, L. N. Gumilyov Eurasian National University

Doctor of Technical Sciences, Professor

Department of System Analysis and Control

Kulman Orazbayeva, Kazakh University of Economics, Finance and International Trade

Doctor of Technical Sciences, Professor

Department of Management

Valentina Makhatova, Atyrau State University named after Kh. Dosmukhamedov

PhD, Professor

Department of Software Engineering

Raigul Tuleuova, Atyrau State University named after Kh. Dosmukhamedov

PhD, Professor

Department of Mathematics and Methods of Teaching Mathematic

Zhumazhan Kulmagambetova, K. Zhubanov Aktobe Regional University

PhD, Associate Professor

Department of Informatics and Information Technologies

Timur Toleuov, K. Zhubanov Aktobe Regional University

Senior Lecturer

Department of Informatics and Information Technologies

Nurlan Mukatayev, L. N. Gumilyov Eurasian National University

PhD

Department of System Analysis and Control

Yerbol Ospanov, Semey State University named after Shakarim

PhD

Department of Automation and Information Technologies

References

  1. Giarratano, J. C., Riley, G. D. (2006). Expert Systems: Principles and Programming. Moscow: OOO «I.D. Vil'yams», 1152.
  2. Gronostajski, Z., Hawryluk, M., Kaszuba, M., Marciniak, M., Niechajowicz, A., Polak, S. et. al. (2015). The expert system supporting the assessment of the durability of forging tools. The International Journal of Advanced Manufacturing Technology, 82 (9-12), 1973–1991. doi: https://doi.org/10.1007/s00170-015-7522-3
  3. Zamani Sabzi, H., King, J. P., Abudu, S. (2017). Developing an intelligent expert system for streamflow prediction, integrated in a dynamic decision support system for managing multiple reservoirs: A case study. Expert Systems with Applications, 83, 145–163. doi: https://doi.org/10.1016/j.eswa.2017.04.039
  4. Gutsykova, S. (2017). Metod ekspertnyh otsenok. Teoriya i praktika. Moscow: Kogito-Tsentr, 509.
  5. Kahraman, C. (Ed.) (2008). Fuzzy Multi-Criteria Decision Making. Theory and Applications with Recent Developments. Springer, 590. doi: https://doi.org/10.1007/978-0-387-76813-7
  6. Dubois, D. (2011). The role of fuzzy sets in decision sciences: Old techniques and new directions. Fuzzy Sets and Systems, 184 (1), 3–28. doi: https://doi.org/10.1016/j.fss.2011.06.003
  7. Suleymenov, B. A. (2009). Intellektual'nye i gibridnye sistemy upravleniya tehnologicheskimi protsessami. Almaty: Izd-vo «Pikula i K», 304.
  8. Ryzhov, A. P. (2017). Teoriya nechetkih mnozhestv i ee prilozheniy. Moscow: Izd-vo MGU, 115.
  9. Orazbayev, B. B., Orazbayeva, K. N., Utenova, B. E. (2014). Development of mathematical models and modeling of chemical engineering systems under uncertainty. Theoretical Foundations of Chemical Engineering, 48 (2), 138–147. doi: https://doi.org/10.1134/s0040579514020092
  10. Volin, Yu. M., Ostrovskii, G. M. (2007). Multicriteria optimization of technological processes under uncertainty conditions. Automation and Remote Control, 68 (3), 523–538. doi: https://doi.org/10.1134/s0005117907030125
  11. Pavlov, S. Yu., Kulov, N. N., Kerimov, R. M. (2014). Improvement of chemical engineering processes using systems analysis. Theoretical Foundations of Chemical Engineering, 48 (2), 117–126. doi: https://doi.org/10.1134/s0040579514020109
  12. Zaychenko, Yu. P. (1991). Issledovanie operatsiy: nechetkaya optimizatsiya. Kyiv: Vyscha shkola, 191. Available at: https://ru.b-ok.as/book/2951666/3b81d7
  13. Orazbayev, B. B., Orazbayeva, K. N., Kurmangaziyeva, L. T., Makhatova, V. (2015). Multi-criteria optimisation problems for chemical engineering systems and algorithms for their solution based on fuzzy mathematical methods. EXCLI Journal, 14, 984–998. doi: https://doi.org/10.17179/excli2015-266
  14. Biegler, L. T., Lang, Y., Lin, W. (2014). Multi-scale optimization for process systems engineering. Computers & Chemical Engineering, 60, 17–30. doi: https://doi.org/10.1016/j.compchemeng.2013.07.009
  15. Wang, C., Chen, L., Xia, S., Sun, F. (2016). Maximum production rate optimization for sulphuric acid decomposition process in tubular plug-flow reactor. Energy, 99, 152–158. doi: https://doi.org/10.1016/j.energy.2016.01.040
  16. Li, P., Chen, L., Xia, S., Zhang, L. (2019). Maximum Hydrogen Production Rate Optimization for Tubular Steam Methane Reforming Reactor. International Journal of Chemical Reactor Engineering, 17 (9). doi: https://doi.org/10.1515/ijcre-2018-0191
  17. Sekretarev, Y. A., Myatezh, T. V., Moshkin, B. N. (2018). Mathematical model for controlling generation company functioning under modern conditions. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 329 (2), 146–158. Available at: http://earchive.tpu.ru/bitstream/11683/46405/1/bulletin_tpu-2018-v329-i2-14.pdf
  18. Valiakhmetov, R. I., Yamaliev, V. U., Shubin, S. S., Alferov, A. V. (2018). Application of heuristic algorithms in analyzing data to solve the problem of detection of electric centrifugal pumping units. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 329 (2), 159–167. Available at: http://earchive.tpu.ru/bitstream/11683/46406/1/bulletin_tpu-2018-v329-i2-15.pdf
  19. Fayaz, M., Ahmad, S., Ullah, I., Kim, D. (2018). A Blended Risk Index Modeling and Visualization Based on Hierarchical Fuzzy Logic for Water Supply Pipelines Assessment and Management. Processes, 6 (5), 61. doi: https://doi.org/10.3390/pr6050061
  20. Volkov, I., Gracheva, M. (1999). Analiz proektnyh riskov. Available at: https://www.cfin.ru/finanalysis/project_risk.shtml
  21. Ospanov, Y. A., Orazbayev, B. B., Orazbayeva, K. N., Gancarczyk, T., Shaikhanova, A. K. (2016). Control of fuzzy technological objects based on mathematical models. 2016 16th International Conference on Control, Automation and Systems (ICCAS). doi: https://doi.org/10.1109/iccas.2016.7832501
  22. Tehnologicheskiy reglament tehnologicheskogo kompleksa po proizvodstvu benzola (2017). Atyrau: Atyrauskiy neftepererabatyvayuschiy zavod, 387.
  23. Ostreykovskiy, V. A., Karmanov, F. I. (2015). Statisticheskie metody obrabotki eksperimental'nyh dannyh s ispol'zovaniem paketa MathCad. Moscow: Infra-M, 208.
  24. Churakov, E. P. (2016). Vvedenie v mnogomernye statisticheskie metody. Sankt-Peterburg: Lan', 148.
  25. Shiryaev, A. N. (2014). Veroyatnostno-statisticheskie metody v teorii prinyatiya resheniy. Moscow: MTSNMO, 144.
  26. Orazbaev, B. B. (2016). Metody modelirovaniya i prinyatiya resheniy dlya upravleniya proizvodstvom v nechetkoy srede. Astana: Izd-vo Evraziyskiy natsional'nyy universitet imeni. L.N. Gumileva, 398.
  27. Linik, Yu. V. (2017). Metod naimen'shih kvadratov i osnovy matematiko-statisticheskoy teorii obrabotki nablyudeniy. Moscow: Nauka, 307.
  28. Orazbayev, B. B., Ospanov, E. A., Orazbayeva, K. N., Kurmangazieva, L. T. (2018). A Hybrid Method for the Development of Mathematical Models of a Chemical Engineering System in Ambiguous Conditions. Mathematical Models and Computer Simulations, 10 (6), 748–758. doi: https://doi.org/10.1134/s2070048219010125
  29. Fuzzy Logic Toolbox. Available at: https://exponenta.ru/fuzzy-logic-toolbox
  30. Leonenkov, A. (2003). Nechetkoe modelirovanie v srede MATLAB i fuzzyTECH. Sankt-Peterburg: BHV-Peterburg, 719.
  31. Ostrovsky, G. M., Ziyatdinov, N. N., Lapteva, T. V., Silvestrova, A. (2015). Optimization of Chemical Process Design with Chance Constraints by an Iterative Partitioning Approach. Industrial & Engineering Chemistry Research, 54 (13), 3412–3429. doi: https://doi.org/10.1021/ie5048016
  32. Ibrahim, D., Jobson, M., Li, J., Guillén-Gosálbez, G. (2018). Optimization-based design of crude oil distillation units using surrogate column models and a support vector machine. Chemical Engineering Research and Design, 134, 212–225. doi: https://doi.org/10.1016/j.cherd.2018.03.006
  33. Chen, Y., He, L., Li, J., Zhang, S. (2018). Multi-criteria design of shale-gas-water supply chains and production systems towards optimal life cycle economics and greenhouse gas emissions under uncertainty. Computers & Chemical Engineering, 109, 216–235. doi: https://doi.org/10.1016/j.compchemeng.2017.11.014
  34. Harinath, E., Biegler, L. T., Dumont, G. A. (2013). Predictive optimal control for thermo-mechanical pulping processes with multi-stage low consistency refining. Journal of Process Control, 23 (7), 1001–1011. doi: https://doi.org/10.1016/j.jprocont.2013.05.005
  35. Aggarwal, A., Mehra, A., Chandra, S., Khan, I. (2018). Solving Atanassov's I-fuzzy Linear Programming Problems Using Hurwicz's Criterion. Fuzzy Information and Engineering, 10 (3), 339–361. doi: https://doi.org/10.1080/16168658.2019.1644032
  36. Nasseri, S. H., Bavandi, S. (2018). Fuzzy Stochastic Linear Fractional Programming based on Fuzzy Mathematical Programming. Fuzzy Information and Engineering, 10 (3), 324–338. doi: https://doi.org/10.1080/16168658.2019.1612605
  37. Meshalkin, V. P., Gimarov, V. A., Zaytsevskiy, I. V. (2003). Lokal'nye matematicheskie modeli dlya upravleniya promyshlennym predpriyatiem. Moscow: Izd-vo fiziko-matematicheskoy literatury, 456.
  38. Grossmann, I. E. (2014). Challenges in the Application of Mathematical Programming in the Enterprise-wide Optimization of Process Industries. Teoreticheskie osnovy khimicheskoi tekhnologii, 48 (5), 500–517. doi: https://doi.org/10.7868/s0040357114050054
  39. Kenzhebaeva, T. S., Orazbayev, B. B., Abitova, G. A., Orazbayeva, K. N., Spichak, Y. V. (2017). Study and design of mathematical models for chemical-technological systems under conditions of uncertainty based on the system analysis. Proceedings of the 2017 International Conference on Industrial Engineering and Operations Management (IEOM). Bristol, 776–790. Available at: http://www.ieomsociety.org/ieomuk/papers/183.pdf
  40. Shukaev, D. N. (2017). Prikladnye metody optimizatsii. Moscow: Izdatel'skiy dom Akademii Estestvoznaniya, 212. Available at: https://www.monographies.ru/docs/2017/11/file_5a01c64e72d6f.pdf
  41. Shumskiy, V. M., Zyryanova, L. A. (1981). Inzhenernye zadachi v neftepererabotke i neftehimii. Reshenie na tsifrovyh vychislitel'nyh mashinah. Moscow: Izd-vo «Himiya», 254.
  42. Méndez, C. A., Cerdá, J., Grossmann, I. E., Harjunkoski, I., Fahl, M. (2006). State-of-the-art review of optimization methods for short-term scheduling of batch processes. Computers & Chemical Engineering, 30 (6-7), 913–946. doi: https://doi.org/10.1016/j.compchemeng.2006.02.008

Downloads

Published

2021-04-30

How to Cite

Orazbayev, B., Orazbayeva, K., Makhatova, V., Tuleuova, R., Kulmagambetova, Z., Toleuov, T., Mukatayev, N., & Ospanov, Y. (2021). Methods of constructing models and optimizing the operating modes of a chemical engineering system for the production of benzene in a fuzzy environment . Eastern-European Journal of Enterprise Technologies, 2(2 (110), 78–88. https://doi.org/10.15587/1729-4061.2021.226167