Computer simulation of logarithmic transformation function to expand the range of high-precision measurements

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.227984

Keywords:

redundant methods, measurement equations, accuracy increase, normalized quantities, reproduction errors of quantities

Abstract

Studies of the effect of normalized radiation fluxes on the measurement result revealed the most influential one. The value of the normalized flow F0 was shown to have a greater effect on the relative measurement error than ΔF0. This allows investigating the relationship between the controlled Fx and the normalized flow F0. Experimental studies have confirmed that by a threefold increase in the normalized flow F0 relative to the controlled flow Fx, it becomes possible to increase the measurement accuracy in a wide range. In particular, it was found that at the flux value F0=0.16×10-3 W, it becomes possible to measure the controlled flow in a wider range Fх=(0.16×10-3÷0.97×10-3) W with a relative error of thousandths of a percent. The effect of the reproduction error on the measurement result under the condition of a threefold increase in the normalized flow F0 relative to the controlled flow Fх is shown. It was found that an increase in the reproduction error of the normalized radiation fluxes by 1 order leads to a narrowing of the range in which the value of the relative error tends to zero. It is shown that in the absence of a threefold increase in the normalized flow F0, an increase in the reproduction error of the normalized flows by 1 order leads to individual cases of reduction in the relative error to small-order values. The latter, by the way, applies to cases where the ratio between the normalized F0 and controlled flow Fx, as 3 to 1, is ensured. It is shown that the reproduction error of the dark flow does not affect the measurement result.Thus, there is reason to believe that it is possible to expand the measurement range, in which the value of the relative error is thousandths of a percent, even for 1 measurement cycle

Author Biographies

Volodymyr Shcherban’, Kyiv National University of Technologies and Design

Doctor of Technical Sciences, Professor, Head of Department

Department of Computer Science and Technology

Ganna Korogod, Kyiv National University of Technologies and Design

PhD, Associate Professor

Department of Computer Science and Technology

Oksana Kolysko, Kyiv National University of Technologies and Design

PhD, Associate Professor

Department of Computer Science and Technology

Mariana Kolysko, Kyiv National University of Technologies and Design

PhD, Associate Professor

Department of Computer Science and Technology

Yury Shcherban’, Kyiv College of Light Industry

Doctor of Technical Sciences, Professor, Head of Department

Department of Light Industry Technologies

Ganna Shchutska, Kyiv College of Light Industry

Doctor of Technical Sciences, Associate Professor, Director

Department of Light Industry Technologies

References

  1. Pronin, A. N., Sapozhnikova, K. V., Taymanov, R. E. (2015). Reliability of measurement information in control systems. Problems and their solution. T-Comm, 9 (3), 32–37. Available at: https://cyberleninka.ru/article/n/dostovernost-izmeritelnoy-informatsii-v-sistemah-upravleniya-problemy-i-resheniya/viewer
  2. Shcherban’, V., Melnyk, G., Sholudko, M., Kolysko, O., Kalashnyk, V. (2018). Yarn tension while knitting textile fabric. Fibres and Textiles, 3, 74–83. Available at: http://vat.ft.tul.cz/2018/3/VaT_2018_3_12.pdf
  3. Shcherban’, V., Kolysko, O., Melnyk, G., Sholudko, M., Shcherban’, Y., Shchutska, G. (2020). Determining tension of yarns when interacting with guides and operative parts of textile machinery having the torus form. Fibres and Textiles, 4, 87–95. Available at: http://vat.ft.tul.cz/2020/4/VaT_2020_4_12.pdf
  4. Shcherban’, V., Melnyk, G., Sholudko, M., Kolysko, O., Kalashnyk, V. (2019). Improvement of structure and technology of manufacture of multilayer technical fabric. Fibres and Textiles, 2, 54–63. Available at: http://vat.ft.tul.cz/2019/2/VaT_2019_2_10.pdf
  5. Shcherban’, V., Makarenko, J., Melnyk, G., Shcherban’, Y., Petko, A., Kirichenko, A. (2019). Effect of the yarn structure on the tension degree when interacting with high-curved guides. Fibres and Textiles, 4, 59–68. Available at: http://vat.ft.tul.cz/2019/4/VaT_2019_4_8.pdf
  6. Hodovanyuk, V. M., Doktorovych, I. V., Yuryev, G. V., Fodchuk, I. M., Chorok, Ye. O. (2018). Additional errors occurring in illuminators. Herald of Khmelnytskyi national university, 3 (261), 253–257. Available at: http://journals.khnu.km.ua/vestnik/pdf/tech/pdfbase/2018/2018_3/jrn/pdf/43.pdf
  7. Tankevych, Ye. M., Yakovlieva, I. V., Varskyi, G. M. (2016). Increasing the Accuracy of Voltage Measuring Channels of Electrical Power Object Control Systems. Visnyk Vinnytskoho politekhnichnoho instytutu, 1, 79–84. Available at: https://visnyk.vntu.edu.ua/index.php/visnyk/article/download/1880/1880/
  8. Stepaniak, M. M., Skalskyi, V. R., Stepaniak, M. V. (2010). Doslidzhennia mozhlyvosti pidvyshchennia tochnosti vymiriuvannia temperatury obertovykh obiektiv. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 686, 13–23. Available at: http://ena.lp.edu.ua:8080/bitstream/ntb/34026/1/02.pdf
  9. Yanenko, O. P., Mikhailenko, S. V., Lisnichuk, A. S. (2014). Radiometric modulation measuring device of intensity of optical radiation. Visnyk Natsionalnoho tekhnichnoho universytetu Ukrainy "Kyivskyi politekhnichnyi instytut". Ser.: Radiotekhnika. Radioaparatobuduvannia, 56, 96–101. Available at: http://nbuv.gov.ua/UJRN/VKPI_rr_2014_56_11
  10. Wu, J., Chen, Y., Gao, S., Li, Y., Wu, Z. (2015). Improved measurement accuracy of spot position on an InGaAs quadrant detector. Applied Optics, 54 (27), 8049. doi: https://doi.org/10.1364/ao.54.008049
  11. Hidalgo-López, J. A., Fernández-Ramos, R., Romero-Sánchez, J., Martín-Canales, J. F., Ríos-Gómez, F. J. (2018). Improving Accuracy in the Readout of Resistive Sensor Arrays. Journal of Sensors, 2018, 1–12. doi: https://doi.org/10.1155/2018/9735741
  12. Orozco, L. (2011). Optimizing Precision Photodiode Sensor Circuit Design. Analog Devices. Available at: https://www.analog.com/media/en/technical-documentation/tech-articles/Optimizing-Precision-Photodiode-Sensor-Circuit-Design-MS-2624.pdf
  13. Zhang, J., Qian, W., Gu, G., Mao, C., Ren, K., Wu, C. et. al. (2019). Improved algorithm for expanding the measurement linear range of a four-quadrant detector. Applied Optics, 58 (28), 7741. doi: https://doi.org/10.1364/ao.58.007741
  14. Hobbs, M. J., Tan, C. H. and Willmott, J. R. (2013). Evaluation of phase sensitive Hobbs, M. J., Tan, C. H., Willmott, J. R. (2013). Evaluation of phase sensitive detection method and Si avalanche photodiode for radiation thermometry. Journal of Instrumentation, 8 (03), P03016–P03016. doi: https://doi.org/10.1088/1748-0221/8/03/p03016
  15. Petrovska, G., Demkovych, I. (2010). Apparatus for measurement absorption of the thin-film coatings by the photothermal method. Electrical Engineering, 61, 128–134. Available at: http://elit.lnu.edu.ua/pdf/61_17.pdf
  16. Riazimehr, S., Kataria, S., Bornemann, R., Haring Bolívar, P., Ruiz, F. J. G., Engström, O. et. al. (2017). High Photocurrent in Gated Graphene–Silicon Hybrid Photodiodes. ACS Photonics, 4 (6), 1506–1514. doi: https://doi.org/10.1021/acsphotonics.7b00285
  17. Lewis, G., Merken, P., Vandewal, M. (2018). Enhanced Accuracy of CMOS Smart Temperature Sensors by Nonlinear Curvature Correction. Sensors, 18 (12), 4087. doi: https://doi.org/10.3390/s18124087
  18. Qin, J., Cui, S., Dai, J. (2020). Noise Analysis and Compensation Strategy of Photoelectric Detection Circuit. Journal of Physics: Conference Series, 1601, 022047. doi: https://doi.org/10.1088/1742-6596/1601/2/022047
  19. Chen, C.-C., Chen, C.-L., Lin, Y. (2016). All-Digital Time-Domain CMOS Smart Temperature Sensor with On-Chip Linearity Enhancement. Sensors, 16 (2), 176. doi: https://doi.org/10.3390/s16020176
  20. Shcherban’, V., Korogod, G., Kolysko, O., Kolysko, M., Shcherban’, Y., Shchutska, G. (2020). Computer simulation of multiple measurements of logarithmic transformation function by two approaches. Eastern-European Journal of Enterprise Technologies, 6 (4 (108)), 6–13. doi: https://doi.org/10.15587/1729-4061.2020.218517
  21. Shcherban, V., Korogod, G., Chaban, V., Kolysko, O., Shcherban’, Y., Shchutska, G. (2019). Computer simulation methods of redundant measurements with the nonlinear transformation function. Eastern-European Journal of Enterprise Technologies, 2 (5 (98)), 16–22. doi: https://doi.org/10.15587/1729-4061.2019.160830
  22. Soboleva, N. A., Melamid, A. E. (1974). Fotoelektronnye pribory. Moscow: «Vysshaya shkola», 376. Available at: https://lib.convdocs.org/docs/index-20291.html
  23. Kondratov, V. T. (2010). Metody izbytochnyh izmereniy: osnovnye opredeleniya i klassifikatsiya. Visnyk Khmelnytskoho natsionalnoho universytetu. Tekhnichni nauky, 3, 220–232. Available at: http://journals.khnu.km.ua/vestnik/pdf/tech/2010_3/47kon.pdf
  24. Kondratov, V. T. (2015). The theory redundant and super-redundant measurements: super-redundant measurements of resistance of resistors and resistive sensors. The message 1. Vymiriuvalna ta obchysliuvalna tekhnika v tekhnolohichnykh protsesakh, 4, 7–22. Available at: http://nbuv.gov.ua/UJRN/vott_2015_4_3
  25. Kondratov, V. T. (2009). Teoriya izbytochnyh izmereniy: universal'noe uravnenie izmereniy. Vіsnik Hmel'nits'kogo natsіonal'nogo unіversitetu. Tekhnichni nauky, 5, 116–129. Available at: http://journals.khnu.km.ua/vestnik/pdf/tech/2009_5/zmist.files/23kon.pdf

Downloads

Published

2021-04-30

How to Cite

Shcherban’, V., Korogod, G., Kolysko, O., Kolysko, M., Shcherban’, Y., & Shchutska, G. (2021). Computer simulation of logarithmic transformation function to expand the range of high-precision measurements. Eastern-European Journal of Enterprise Technologies, 2(9 (110), 27–36. https://doi.org/10.15587/1729-4061.2021.227984

Issue

Section

Information and controlling system