Development of a three-zone combustion model for stratified-charge spark-ignition engine

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.228812

Keywords:

three-zone combustion model, engine operating process, stratified air-fuel charge

Abstract

A thermodynamic model for calculating the operating process in the cylinder of a spark-ignition engine with internal mixture formation and stratified air-fuel charge based on the volume balance method was developed. The model takes into account the change in the working fluid volume during the piston movement in the cylinder.

The equation of volume balance of internal mixture formation processes during direct fuel injection into the engine cylinder was compiled. The equation takes into account the adiabatic change in the volume of the stratified air-fuel charge, consisting of fuel-air mixture volume and air volume. From the heat balance equation, the change in the fuel-air mixture volume during gasoline evaporation in the fuel stream and from the surface of the fuel film due to external heat transfer was determined.

Basic equations of combustion-expansion processes of the stratified air-fuel charge were derived, taking into account three zones corresponding to combustion products, fuel-air mixture and air volumes. The equation takes into account the change in the working fluid volume due to heat transfer and heat exchange between the zones and the walls of the above-piston volume. Dependences for determining the temperature in the three considered zones and pressure in the cylinder were obtained.

Graphs of changes in the volumes of the combustion products, fuel-air mixture and air zones with the change of the above-piston volume in partial load modes (n=3,000 rpm) were plotted. With increasing load from bmep=0.144 MPa to bmep=0.322 MPa, at the moment of fuel ignition, the volume of the fuel-air mixture increases from 70 % to 92 % of the above-piston volume. At the same time, the air volume decreases from 30 % to 8 %.

Analysis of theoretical and experimental indicator diagrams showed that discrepancies in the maximum combustion pressure do not exceed 5 %

Author Biographies

Volodymyr Korohodskyi, Kharkiv National Automobile and Highway University

Doctor of Technical Sciences, Associate Professor

Department of Internal Combustion Engines

Andrii Rogovyi, Kharkiv National Automobile and Highway University

Doctor of Technical Sciences, Associate Professor

Department of Theoretical Mechanics and Hydraulics

Oleksandr Voronkov, Kharkiv National Automobile and Highway University

Doctor of Technical Sciences, Professor

Department of Internal Combustion Engines

Andrii Polivyanchuk, O. M. Beketov National University of Urban Economy in Kharkiv

Doctor of Technical Sciences, Professor

Department of Urban Environmental Engineering

Pavlo Gakal, National Aerospace University "Kharkiv Aviation Institute"

Doctor of Technical Sciences, Associate Professor

Department of Aerospace Thermal Engineering

Oleksii Lysytsia, National Aerospace University "Kharkiv Aviation Institute"

PhD, Associate Professor

Department of Aerospace Thermal Engineering

Igor Khudiakov, Kherson State Maritime Academy

Senior Lecturer

Department of Operation of Ship Power Plants

Tamara Makarova, Vinnytsia National Technical University

PhD

Department of Automobiles and Transport Management

Mariіa Hnyp, Ivano-Frankivsk National Technical University of Oil and Gas

PhD

Department of Technological Transport

Yevhen Haiek, Kharkiv Petro Vasylenko National Technical University of Agriculture

PhD

Department of Optimization of Technological Systems named after T. Yevsiukov

References

  1. World Energy Outlook 2020. IEA. Available at: https://www.iea.org/reports/world-energy-outlook-2020
  2. Parsadanov, I., Marchenko, A., Tkachuk, M., Kravchenko, S., Polyvianchuk, A., Strokov, A. et. al. (2020). Complex Assessment of Fuel Efficiency and Diesel Exhaust Toxicity. SAE Technical Paper Series. doi: https://doi.org/10.4271/2020-01-2182
  3. Liu, W. (2013). Introduction to Hybrid Vehicle System Modeling and Control. John Wiley & Sons Ltd. doi: https://doi.org/10.1002/9781118407400
  4. Migal, V., Lebedev, A., Shuliak, M., Kalinin, E., Arhun, S., Korohodskyi, V. (2020). Reducing the vibration of bearing units of electric vehicle asynchronous traction motors. Journal of Vibration and Control, 107754632093763. doi: https://doi.org/10.1177/1077546320937634
  5. Leontiev, D. N., Voronkov, O., Korohodskyi, V., Hlushkova, D., Nikitchenko, I., Teslenko, E., Lykhodii, O. (2020). Mathematical Modelling of Operating Processes in the Pneumatic Engine of the Car. SAE Technical Paper Series. doi: https://doi.org/10.4271/2020-01-2222
  6. Panchuk, M., Kryshtopа, S., Sladkowski, A., Kryshtopa, L., Klochko, N. et. al. (2019). Effi ciency of Production of Motor Biofuels for Water and Land Transport. Naše More, 66 (3), 6–12. doi: https://doi.org/10.17818/nm/2019/3.8
  7. Kryshtopa, S., Kryshtopa, L., Panchuk, M., Smigins, R., Dolishnii, B. (2021). Composition and energy value research of pyrolise gases. IOP Conference Series: Earth and Environmental Science, 628, 012008. doi: https://doi.org/10.1088/1755-1315/628/1/012008
  8. Kryshtopa, S., Kryshtopa, L., Melnyk, V., Dolishnii, B., Prunko, I., Demianchuk, Y. (2017). Experimental research on diesel engine working on a mixture of diesel fuel and fusel oils. Transport Problems, 12 (2), 53–63. doi: https://doi.org/10.20858/tp.2017.12.2.6
  9. Panchuk, M., Kryshtopa, S., Panchuk, A. (2020). Innovative Technologies for the Creation of a New Sustainable, Environmentally Neutral Energy Production in Ukraine. 2020 International Conference on Decision Aid Sciences and Application (DASA). doi: https://doi.org/10.1109/dasa51403.2020.9317165
  10. Panchuk, M., Kryshtopa, S., Panchuk, A., Kryshtopa, L., Dolishnii, B., Mandryk, I., Sladkowski, A. (2019). Perspectives for developing and using the torrefaction technology in Ukraine. International Journal of Energy for a Clean Environment, 20 (2), 113–134. doi: https://doi.org/10.1615/interjenercleanenv.2019026643
  11. Panchuk, M., Kryshtopa, S., Sładkowski, A., Panchuk, A. (2020). Environmental Aspects of the Production and Use of Biofuels in Transport. Lecture Notes in Networks and Systems, 115–168. doi: https://doi.org/10.1007/978-3-030-42323-0_3
  12. Van Basshuysen, R. (Ed.) (2017). Ottomotor mit Direkteinspritzung und Direkteinblasung. Springer, 621. doi: https://doi.org/10.1007/978-3-658-12215-7
  13. Alturki, E. W. (2017). Four-Stroke and Two-Stroke Marine Engines Comparison and Application. International Journal of Engineering Research and Applications, 07 (04), 49–56. doi: https://doi.org/10.9790/9622-0704034956
  14. Eroschenko, S. A., Korogodskiy, V. A., Kagramanyan, A. A., Vrublevskiy, A. N., Vasilenko, O. V., Oboznyy, S. V. (2012). Eksperimental'nye issledovaniya dvigatelya s iskrovym zazhiganiem i neposredstvennym vpryskivaniem topliva pri rabote na benzo-etanol'noy smesi. Dvigateli vnutrennego sgoraniya, 1, 8–9. Available at: http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/61/1/DVS_2012_1_Eroshenkov_Eksperimentalnye%20issledovaniya.pdf
  15. Korohodskyi, V. (2020). Comparison of technical, economic and environmental indicators of two-stroke and fourstroke engines according to load characteristics. Bulletin of Kharkov National Automobile and Highway University, 90, 80–94. doi: https://doi.org/10.30977/bul.2219-5548.2020.90.0.80
  16. Korohodskyi, V., Khandrymailov, A., Stetsenko, O. (2016). Dependence of the coefficients of residual gases on the type of mixture formation and the shape of a combustion chamber. Eastern-European Journal of Enterprise Technologies, 1 (5 (79)), 4–12. doi: https://doi.org/10.15587/1729-4061.2016.59789
  17. Korohodskyi, V., Voronkov, A., Migal, V., Nikitchenko, I., Zenkin, E., Rublov, V., Rudenko, N. (2020). Determining the criteria and the degree of the stratification of the air-fuel charge in a cylinder of a spark-ignition engine during injecting fuel. IOP Conference Series: Materials Science and Engineering, 977, 012002. doi: https://doi.org/10.1088/1757-899x/977/1/012002
  18. Korohodskyi, V., Kryshtopa, S., Migal, V., Rogovyi, A., Polivyanchuk, A., Slyn’ko, G. et. al. (2020). Determining the characteristics for the rational adjusting of an fuel-air mixture composition in a two-stroke engine with internal carburation. Eastern-European Journal of Enterprise Technologies, 2 (5 (104)), 39–52. doi: https://doi.org/10.15587/1729-4061.2020.200766
  19. Caton, J. (2018). The Thermodynamics of Internal Combustion Engines: Examples of Insights. Inventions, 3 (2), 33. doi: https://doi.org/10.3390/inventions3020033
  20. Bajwa, A. U., Patterson, M., Linker, T., Jacobs, T. J. (2019). A New Single-Zone Multi-Stage Scavenging Model for Real-Time Emissions Control in Two-Stroke Engines. ASME 2019 Internal Combustion Engine Division Fall Technical Conference. doi: https://doi.org/10.1115/icef2019-7198
  21. De Faria, M. M. N., Vargas Machuca Bueno, J. P., Ayad, S. M. M. E., Belchior, C. R. P. (2017). Thermodynamic simulation model for predicting the performance of spark ignition engines using biogas as fuel. Energy Conversion and Management, 149, 1096–1108. doi: https://doi.org/10.1016/j.enconman.2017.06.045
  22. Finesso, R., Spessa, E. (2014). A real time zero-dimensional diagnostic model for the calculation of in-cylinder temperatures, HRR and nitrogen oxides in diesel engines. Energy Conversion and Management, 79, 498–510. doi: https://doi.org/10.1016/j.enconman.2013.12.045
  23. Douvartzides, S., Karmalis, I., Ntinas, N. (2020). Thermodynamic Cycle Analysis of an Automotive Internal Combustion Engine With the Characteristics of the Commercial BMW N54 Spark-Ignition Model. Journal of Energy Resources Technology, 142 (10). doi: https://doi.org/10.1115/1.4046600
  24. Caton, J. A. (2018). Maximum efficiencies for internal combustion engines: Thermodynamic limitations. International Journal of Engine Research, 19(10), 1005–1023. doi: https://doi.org/10.1177/1468087417737700
  25. Wissink, M. L., Splitter, D. A., Dempsey, A. B., Curran, S. J., Kaul, B. C., Szybist, J. P. (2017). An assessment of thermodynamic merits for current and potential future engine operating strategies. International Journal of Engine Research, 18 (1-2), 155–169. doi: https://doi.org/10.1177/1468087416686698
  26. Merker, G. P., Teichmann, R. (Eds.) (2014). Grundlagen Verbrennungsmotoren. Funktionsweise, Simulation, Messtechnik. Springer, 1132. doi: https://doi.org/10.1007/978-3-658-03195-4
  27. Kavtaradze, R. Z., Onischenko, D. O. (2013). Modelirovanie i raschet rabochego protsessa v dvigatelyah. Odnozonnye i mnogozonnye modele. V kn. RAN. Mashinostroenie. Entsiklopediya. Vol. IV-14. Dvigateli vnutrennego sgoraniya. Moscow: Mashinostroenie, 102–113. Available at: https://ua1lib.org/book/3240340/497a21?regionChanged=&redirect=227103051
  28. Pischinger, R., Klell, M., Sams, T. (2009). Thermodynamik der Verbrennungskraftmaschine. Springer, 475. doi: https://doi.org/10.1007/978-3-211-99277-7
  29. Medina, A., Curto-Risso, P. L., Hernández, A. C., Guzmán-Vargas, L., Angulo-Brown, F., Sen, A. K. (2014). Quasi-Dimensional Simulation of Spark Ignition Engines. Springer-Verlag, 195. doi: https://doi.org/10.1007/978-1-4471-5289-7
  30. Wang, Y. (2020). A Novel Two-Zone Thermodynamic Model for Spark-Ignition Engines Based on an Idealized Thermodynamic Process. Energies, 13 (15), 3801. doi: https://doi.org/10.3390/en13153801
  31. Stepanenko, D., Kneba, Z. (2019). Thermodynamic modeling of combustion process of the internal combustion engines – an overview. Combustion Engines, 178 (3), 27–37. doi: https://doi.org/10.19206/ce-2019-306
  32. Kaprielian, L., Demoulin, M., Cinnella, P., Daru, V. (2013). Multi-Zone Quasi-Dimensional Combustion Models for Spark-Ignition Engines. SAE Technical Paper Series. doi: https://doi.org/10.4271/2013-24-0025
  33. Baratta, M., Ferrari, A., Zhang, Q. (2018). Multi-zone thermodynamic modeling of combustion and emission formation in CNG engines using detailed chemical kinetics. Fuel, 231, 396–403. doi: https://doi.org/10.1016/j.fuel.2018.05.088
  34. Monteiro, E., Rouboa, A., Bellenoue, M., Boust, B., Sotton, J. (2014). Multi-zone modeling and simulation of syngas combustion under laminar conditions. Applied Energy, 114, 724–734. doi: https://doi.org/10.1016/j.apenergy.2012.08.027
  35. Sun, Z. Y., Xu, C. (2020). Turbulent burning velocity of stoichiometric syngas flames with different hydrogen volumetric fractions upon constant-volume method with multi-zone model. International Journal of Hydrogen Energy, 45 (7), 4969–4978. doi: https://doi.org/10.1016/j.ijhydene.2019.12.054
  36. Azarmanesh, S., Targhi, M. Z. (2021). Comparison of laser ignition and spark plug by thermodynamic simulation of multi-zone combustion for lean methane-air mixtures in the internal combustion engine. Energy, 216, 119309. doi: https://doi.org/10.1016/j.energy.2020.119309
  37. Bhat, V., Tamma, B. (2014). Development of Multi-Zone Phenomenological Model for SI Engine. SAE Technical Paper Series. doi: https://doi.org/10.4271/2014-01-1068
  38. Glagolev, N. M. (1950). Rabochie protsessy dvigateley vnutrennego sgoraniya. Moscow: Mashgiz, 480. Available at: https://ua1lib.org/book/2445345/fa8d8f
  39. D'yachenko, V. G. (1970). Differentsial'nye uravneniya protsessa gazoobmena dvigateley vnutrennego sgoraniya. Dvigateli vnutrennego sgoraniya, 11, 17–24. Available at: https://www.twirpx.com/file/935076/
  40. Martyr, A. J., Plint, M. A. (2012). Engine Testing. The Design, Building, Modification and Use of Powertrain Test Facilities. Butterworth-Heinemann. doi: https://doi.org/10.1016/c2010-0-66322-x
  41. Bernhard, F. (Ed.) (2014). Handbuch der Technischen Temperaturmessung. Springer Vieweg, 1619. doi: https://doi.org/10.1007/978-3-642-24506-0
  42. Korogodskiy, V. A., Stetsenko, O. N. (2016). Rezul'taty modelirovaniya protsessa sgoraniya rassloennogo toplivno-vozdushnogo zaryada v dvuhtaktnom dvigatele s iskrovym zazhiganiem. Mizhnar. nauk.-prakt. ta nauk.-metod. konf.: Novitni tekhnolohiyi v avtomobilebuduvanni, transporti i pry pidhotovtsi fakhivtsiv. Kharkiv: KhNADU, 216–217. Available at: https://af.khadi.kharkov.ua/fileadmin/F-AUTOMOBILE/%D0%9A%D0%BE%D0%BD%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D1%96%D1%97/2016_conf_III/sbornik_2016.pdf
  43. Kulygin, V. I., Korogodskyj, V. A., Kyrylyuk, I. O., Lomov, S. G. (2007). Pat. No. WO/2009/044225. A Method of Mixing in a Combustion Chamber of an Internal Combustion Engine and a Spark-Ignition Direct-Injection Stratified Fuel-Air Charge Internal Combustion Engine. No. WO/2009/044225; declareted: 27.12.2007; published: 09.04.2009. Available at: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2009044225&tab=PCTBIBLIO
  44. Hoppe, N., Weberbauer, F., Woschni, G., Zeilinger, K. (2003). Experimentelle Erfassung und Simulation des Betriebsverhaltens von Ottomotoren mit Direkteinspritzung. MTZ - Motortechnische Zeitschrift, 64 (7-8), 628–635. doi: https://doi.org/10.1007/bf03227117
  45. Korogodskiy, V. A. (2017). Nauchnye osnovy perspektivnyh rabochih protsessov dvigateley s vnutrennim smeseobrazovaniem i iskrovym zazhiganiem. Kharkiv: KhNADU, 380. Available at: http://library.kpi.kharkov.ua/uk/technics_Naospd
  46. Korohodskiy, V. A., Stetsenko, O. N., Tkachenko, E. A. (2015). The influence stratification of fuel and air charge on combustion indicators two-stroke engines with spark ignition. Collection of scientific works of the Ukrainian State University of Railway Transport, 154, 142–148. doi: https://doi.org/10.18664/1994-7852.154.2015.66009
  47. Petrichenko, R. M. (1983). Fizicheskie osnovy vnutritsilindrovyh protsessov v dvigatelyah vnutrennego sgoraniya. Leningrad: LGU, 244. Available at: https://ua1lib.org/book/3084734/bb9887?regionChanged=&redirect=227115960
  48. Spektorov, L. G., Gurlyand, A. D. (1975). Raschet ispareniya benzina s poverhnosti zhidkoy plenki pri vpryske v dvigatel' s vosplameneniem ot iskry. Dvigateli vnutrennego sgoraniya, 22, 103–110. Available at: https://www.twirpx.com/file/1564689/
  49. D'yachenko, V. G. (2009). Teoriya dvigateley vnutrennego sgoraniya. Kharkiv: KhNADU, 500. Available at: https://1lib.nl/book/1275641/e44835
  50. Vibe, I. I. (1962). Novoe o rabochem tsikle dvigateley. Moscow: Mashgiz, 272. Available at: https://ua1lib.org/book/2445326/eafc04
  51. Kavtaradze, R. Z. (2016). Lokal'niy teploobmen v porshnevyh dvigatelyah. Moscow: Izd-vo MGTU im. N.E. Baumana, 520.
  52. Kavtaradze, R. Z. (2016). Teoriya porshnevyh dvigateley. Spetsial'nye glavy. Moscow: MGTU im. N.E. Baumana, 589. Available at: https://ua1lib.org/book/4988543/f696f3
  53. Caton, J. A. (Ed.) (2015). An Introduction to Thermodynamic Cycle Simulations for Internal Combustion Engines. John Wiley & Sons, Ltd, 367. doi: https://doi.org/10.1002/9781119037576
  54. Heywood, J. B. (2018). Internal Combustion Engine Fundamentals. McGraw-Hill Education. Available at: https://www.accessengineeringlibrary.com/content/book/9781260116106

Downloads

Published

2021-04-30

How to Cite

Korohodskyi, V., Rogovyi, A., Voronkov, O., Polivyanchuk, A., Gakal, P., Lysytsia, O., Khudiakov, I., Makarova, T., Hnyp, M., & Haiek, Y. (2021). Development of a three-zone combustion model for stratified-charge spark-ignition engine . Eastern-European Journal of Enterprise Technologies, 2(5 (110), 46–57. https://doi.org/10.15587/1729-4061.2021.228812

Issue

Section

Applied physics