Development of a three-zone combustion model for stratified-charge spark-ignition engine
DOI:
https://doi.org/10.15587/1729-4061.2021.228812Keywords:
three-zone combustion model, engine operating process, stratified air-fuel chargeAbstract
A thermodynamic model for calculating the operating process in the cylinder of a spark-ignition engine with internal mixture formation and stratified air-fuel charge based on the volume balance method was developed. The model takes into account the change in the working fluid volume during the piston movement in the cylinder.
The equation of volume balance of internal mixture formation processes during direct fuel injection into the engine cylinder was compiled. The equation takes into account the adiabatic change in the volume of the stratified air-fuel charge, consisting of fuel-air mixture volume and air volume. From the heat balance equation, the change in the fuel-air mixture volume during gasoline evaporation in the fuel stream and from the surface of the fuel film due to external heat transfer was determined.
Basic equations of combustion-expansion processes of the stratified air-fuel charge were derived, taking into account three zones corresponding to combustion products, fuel-air mixture and air volumes. The equation takes into account the change in the working fluid volume due to heat transfer and heat exchange between the zones and the walls of the above-piston volume. Dependences for determining the temperature in the three considered zones and pressure in the cylinder were obtained.
Graphs of changes in the volumes of the combustion products, fuel-air mixture and air zones with the change of the above-piston volume in partial load modes (n=3,000 rpm) were plotted. With increasing load from bmep=0.144 MPa to bmep=0.322 MPa, at the moment of fuel ignition, the volume of the fuel-air mixture increases from 70 % to 92 % of the above-piston volume. At the same time, the air volume decreases from 30 % to 8 %.
Analysis of theoretical and experimental indicator diagrams showed that discrepancies in the maximum combustion pressure do not exceed 5 %
References
- World Energy Outlook 2020. IEA. Available at: https://www.iea.org/reports/world-energy-outlook-2020
- Parsadanov, I., Marchenko, A., Tkachuk, M., Kravchenko, S., Polyvianchuk, A., Strokov, A. et. al. (2020). Complex Assessment of Fuel Efficiency and Diesel Exhaust Toxicity. SAE Technical Paper Series. doi: https://doi.org/10.4271/2020-01-2182
- Liu, W. (2013). Introduction to Hybrid Vehicle System Modeling and Control. John Wiley & Sons Ltd. doi: https://doi.org/10.1002/9781118407400
- Migal, V., Lebedev, A., Shuliak, M., Kalinin, E., Arhun, S., Korohodskyi, V. (2020). Reducing the vibration of bearing units of electric vehicle asynchronous traction motors. Journal of Vibration and Control, 107754632093763. doi: https://doi.org/10.1177/1077546320937634
- Leontiev, D. N., Voronkov, O., Korohodskyi, V., Hlushkova, D., Nikitchenko, I., Teslenko, E., Lykhodii, O. (2020). Mathematical Modelling of Operating Processes in the Pneumatic Engine of the Car. SAE Technical Paper Series. doi: https://doi.org/10.4271/2020-01-2222
- Panchuk, M., Kryshtopа, S., Sladkowski, A., Kryshtopa, L., Klochko, N. et. al. (2019). Effi ciency of Production of Motor Biofuels for Water and Land Transport. Naše More, 66 (3), 6–12. doi: https://doi.org/10.17818/nm/2019/3.8
- Kryshtopa, S., Kryshtopa, L., Panchuk, M., Smigins, R., Dolishnii, B. (2021). Composition and energy value research of pyrolise gases. IOP Conference Series: Earth and Environmental Science, 628, 012008. doi: https://doi.org/10.1088/1755-1315/628/1/012008
- Kryshtopa, S., Kryshtopa, L., Melnyk, V., Dolishnii, B., Prunko, I., Demianchuk, Y. (2017). Experimental research on diesel engine working on a mixture of diesel fuel and fusel oils. Transport Problems, 12 (2), 53–63. doi: https://doi.org/10.20858/tp.2017.12.2.6
- Panchuk, M., Kryshtopa, S., Panchuk, A. (2020). Innovative Technologies for the Creation of a New Sustainable, Environmentally Neutral Energy Production in Ukraine. 2020 International Conference on Decision Aid Sciences and Application (DASA). doi: https://doi.org/10.1109/dasa51403.2020.9317165
- Panchuk, M., Kryshtopa, S., Panchuk, A., Kryshtopa, L., Dolishnii, B., Mandryk, I., Sladkowski, A. (2019). Perspectives for developing and using the torrefaction technology in Ukraine. International Journal of Energy for a Clean Environment, 20 (2), 113–134. doi: https://doi.org/10.1615/interjenercleanenv.2019026643
- Panchuk, M., Kryshtopa, S., Sładkowski, A., Panchuk, A. (2020). Environmental Aspects of the Production and Use of Biofuels in Transport. Lecture Notes in Networks and Systems, 115–168. doi: https://doi.org/10.1007/978-3-030-42323-0_3
- Van Basshuysen, R. (Ed.) (2017). Ottomotor mit Direkteinspritzung und Direkteinblasung. Springer, 621. doi: https://doi.org/10.1007/978-3-658-12215-7
- Alturki, E. W. (2017). Four-Stroke and Two-Stroke Marine Engines Comparison and Application. International Journal of Engineering Research and Applications, 07 (04), 49–56. doi: https://doi.org/10.9790/9622-0704034956
- Eroschenko, S. A., Korogodskiy, V. A., Kagramanyan, A. A., Vrublevskiy, A. N., Vasilenko, O. V., Oboznyy, S. V. (2012). Eksperimental'nye issledovaniya dvigatelya s iskrovym zazhiganiem i neposredstvennym vpryskivaniem topliva pri rabote na benzo-etanol'noy smesi. Dvigateli vnutrennego sgoraniya, 1, 8–9. Available at: http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/61/1/DVS_2012_1_Eroshenkov_Eksperimentalnye%20issledovaniya.pdf
- Korohodskyi, V. (2020). Comparison of technical, economic and environmental indicators of two-stroke and fourstroke engines according to load characteristics. Bulletin of Kharkov National Automobile and Highway University, 90, 80–94. doi: https://doi.org/10.30977/bul.2219-5548.2020.90.0.80
- Korohodskyi, V., Khandrymailov, A., Stetsenko, O. (2016). Dependence of the coefficients of residual gases on the type of mixture formation and the shape of a combustion chamber. Eastern-European Journal of Enterprise Technologies, 1 (5 (79)), 4–12. doi: https://doi.org/10.15587/1729-4061.2016.59789
- Korohodskyi, V., Voronkov, A., Migal, V., Nikitchenko, I., Zenkin, E., Rublov, V., Rudenko, N. (2020). Determining the criteria and the degree of the stratification of the air-fuel charge in a cylinder of a spark-ignition engine during injecting fuel. IOP Conference Series: Materials Science and Engineering, 977, 012002. doi: https://doi.org/10.1088/1757-899x/977/1/012002
- Korohodskyi, V., Kryshtopa, S., Migal, V., Rogovyi, A., Polivyanchuk, A., Slyn’ko, G. et. al. (2020). Determining the characteristics for the rational adjusting of an fuel-air mixture composition in a two-stroke engine with internal carburation. Eastern-European Journal of Enterprise Technologies, 2 (5 (104)), 39–52. doi: https://doi.org/10.15587/1729-4061.2020.200766
- Caton, J. (2018). The Thermodynamics of Internal Combustion Engines: Examples of Insights. Inventions, 3 (2), 33. doi: https://doi.org/10.3390/inventions3020033
- Bajwa, A. U., Patterson, M., Linker, T., Jacobs, T. J. (2019). A New Single-Zone Multi-Stage Scavenging Model for Real-Time Emissions Control in Two-Stroke Engines. ASME 2019 Internal Combustion Engine Division Fall Technical Conference. doi: https://doi.org/10.1115/icef2019-7198
- De Faria, M. M. N., Vargas Machuca Bueno, J. P., Ayad, S. M. M. E., Belchior, C. R. P. (2017). Thermodynamic simulation model for predicting the performance of spark ignition engines using biogas as fuel. Energy Conversion and Management, 149, 1096–1108. doi: https://doi.org/10.1016/j.enconman.2017.06.045
- Finesso, R., Spessa, E. (2014). A real time zero-dimensional diagnostic model for the calculation of in-cylinder temperatures, HRR and nitrogen oxides in diesel engines. Energy Conversion and Management, 79, 498–510. doi: https://doi.org/10.1016/j.enconman.2013.12.045
- Douvartzides, S., Karmalis, I., Ntinas, N. (2020). Thermodynamic Cycle Analysis of an Automotive Internal Combustion Engine With the Characteristics of the Commercial BMW N54 Spark-Ignition Model. Journal of Energy Resources Technology, 142 (10). doi: https://doi.org/10.1115/1.4046600
- Caton, J. A. (2018). Maximum efficiencies for internal combustion engines: Thermodynamic limitations. International Journal of Engine Research, 19(10), 1005–1023. doi: https://doi.org/10.1177/1468087417737700
- Wissink, M. L., Splitter, D. A., Dempsey, A. B., Curran, S. J., Kaul, B. C., Szybist, J. P. (2017). An assessment of thermodynamic merits for current and potential future engine operating strategies. International Journal of Engine Research, 18 (1-2), 155–169. doi: https://doi.org/10.1177/1468087416686698
- Merker, G. P., Teichmann, R. (Eds.) (2014). Grundlagen Verbrennungsmotoren. Funktionsweise, Simulation, Messtechnik. Springer, 1132. doi: https://doi.org/10.1007/978-3-658-03195-4
- Kavtaradze, R. Z., Onischenko, D. O. (2013). Modelirovanie i raschet rabochego protsessa v dvigatelyah. Odnozonnye i mnogozonnye modele. V kn. RAN. Mashinostroenie. Entsiklopediya. Vol. IV-14. Dvigateli vnutrennego sgoraniya. Moscow: Mashinostroenie, 102–113. Available at: https://ua1lib.org/book/3240340/497a21?regionChanged=&redirect=227103051
- Pischinger, R., Klell, M., Sams, T. (2009). Thermodynamik der Verbrennungskraftmaschine. Springer, 475. doi: https://doi.org/10.1007/978-3-211-99277-7
- Medina, A., Curto-Risso, P. L., Hernández, A. C., Guzmán-Vargas, L., Angulo-Brown, F., Sen, A. K. (2014). Quasi-Dimensional Simulation of Spark Ignition Engines. Springer-Verlag, 195. doi: https://doi.org/10.1007/978-1-4471-5289-7
- Wang, Y. (2020). A Novel Two-Zone Thermodynamic Model for Spark-Ignition Engines Based on an Idealized Thermodynamic Process. Energies, 13 (15), 3801. doi: https://doi.org/10.3390/en13153801
- Stepanenko, D., Kneba, Z. (2019). Thermodynamic modeling of combustion process of the internal combustion engines – an overview. Combustion Engines, 178 (3), 27–37. doi: https://doi.org/10.19206/ce-2019-306
- Kaprielian, L., Demoulin, M., Cinnella, P., Daru, V. (2013). Multi-Zone Quasi-Dimensional Combustion Models for Spark-Ignition Engines. SAE Technical Paper Series. doi: https://doi.org/10.4271/2013-24-0025
- Baratta, M., Ferrari, A., Zhang, Q. (2018). Multi-zone thermodynamic modeling of combustion and emission formation in CNG engines using detailed chemical kinetics. Fuel, 231, 396–403. doi: https://doi.org/10.1016/j.fuel.2018.05.088
- Monteiro, E., Rouboa, A., Bellenoue, M., Boust, B., Sotton, J. (2014). Multi-zone modeling and simulation of syngas combustion under laminar conditions. Applied Energy, 114, 724–734. doi: https://doi.org/10.1016/j.apenergy.2012.08.027
- Sun, Z. Y., Xu, C. (2020). Turbulent burning velocity of stoichiometric syngas flames with different hydrogen volumetric fractions upon constant-volume method with multi-zone model. International Journal of Hydrogen Energy, 45 (7), 4969–4978. doi: https://doi.org/10.1016/j.ijhydene.2019.12.054
- Azarmanesh, S., Targhi, M. Z. (2021). Comparison of laser ignition and spark plug by thermodynamic simulation of multi-zone combustion for lean methane-air mixtures in the internal combustion engine. Energy, 216, 119309. doi: https://doi.org/10.1016/j.energy.2020.119309
- Bhat, V., Tamma, B. (2014). Development of Multi-Zone Phenomenological Model for SI Engine. SAE Technical Paper Series. doi: https://doi.org/10.4271/2014-01-1068
- Glagolev, N. M. (1950). Rabochie protsessy dvigateley vnutrennego sgoraniya. Moscow: Mashgiz, 480. Available at: https://ua1lib.org/book/2445345/fa8d8f
- D'yachenko, V. G. (1970). Differentsial'nye uravneniya protsessa gazoobmena dvigateley vnutrennego sgoraniya. Dvigateli vnutrennego sgoraniya, 11, 17–24. Available at: https://www.twirpx.com/file/935076/
- Martyr, A. J., Plint, M. A. (2012). Engine Testing. The Design, Building, Modification and Use of Powertrain Test Facilities. Butterworth-Heinemann. doi: https://doi.org/10.1016/c2010-0-66322-x
- Bernhard, F. (Ed.) (2014). Handbuch der Technischen Temperaturmessung. Springer Vieweg, 1619. doi: https://doi.org/10.1007/978-3-642-24506-0
- Korogodskiy, V. A., Stetsenko, O. N. (2016). Rezul'taty modelirovaniya protsessa sgoraniya rassloennogo toplivno-vozdushnogo zaryada v dvuhtaktnom dvigatele s iskrovym zazhiganiem. Mizhnar. nauk.-prakt. ta nauk.-metod. konf.: Novitni tekhnolohiyi v avtomobilebuduvanni, transporti i pry pidhotovtsi fakhivtsiv. Kharkiv: KhNADU, 216–217. Available at: https://af.khadi.kharkov.ua/fileadmin/F-AUTOMOBILE/%D0%9A%D0%BE%D0%BD%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D1%96%D1%97/2016_conf_III/sbornik_2016.pdf
- Kulygin, V. I., Korogodskyj, V. A., Kyrylyuk, I. O., Lomov, S. G. (2007). Pat. No. WO/2009/044225. A Method of Mixing in a Combustion Chamber of an Internal Combustion Engine and a Spark-Ignition Direct-Injection Stratified Fuel-Air Charge Internal Combustion Engine. No. WO/2009/044225; declareted: 27.12.2007; published: 09.04.2009. Available at: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2009044225&tab=PCTBIBLIO
- Hoppe, N., Weberbauer, F., Woschni, G., Zeilinger, K. (2003). Experimentelle Erfassung und Simulation des Betriebsverhaltens von Ottomotoren mit Direkteinspritzung. MTZ - Motortechnische Zeitschrift, 64 (7-8), 628–635. doi: https://doi.org/10.1007/bf03227117
- Korogodskiy, V. A. (2017). Nauchnye osnovy perspektivnyh rabochih protsessov dvigateley s vnutrennim smeseobrazovaniem i iskrovym zazhiganiem. Kharkiv: KhNADU, 380. Available at: http://library.kpi.kharkov.ua/uk/technics_Naospd
- Korohodskiy, V. A., Stetsenko, O. N., Tkachenko, E. A. (2015). The influence stratification of fuel and air charge on combustion indicators two-stroke engines with spark ignition. Collection of scientific works of the Ukrainian State University of Railway Transport, 154, 142–148. doi: https://doi.org/10.18664/1994-7852.154.2015.66009
- Petrichenko, R. M. (1983). Fizicheskie osnovy vnutritsilindrovyh protsessov v dvigatelyah vnutrennego sgoraniya. Leningrad: LGU, 244. Available at: https://ua1lib.org/book/3084734/bb9887?regionChanged=&redirect=227115960
- Spektorov, L. G., Gurlyand, A. D. (1975). Raschet ispareniya benzina s poverhnosti zhidkoy plenki pri vpryske v dvigatel' s vosplameneniem ot iskry. Dvigateli vnutrennego sgoraniya, 22, 103–110. Available at: https://www.twirpx.com/file/1564689/
- D'yachenko, V. G. (2009). Teoriya dvigateley vnutrennego sgoraniya. Kharkiv: KhNADU, 500. Available at: https://1lib.nl/book/1275641/e44835
- Vibe, I. I. (1962). Novoe o rabochem tsikle dvigateley. Moscow: Mashgiz, 272. Available at: https://ua1lib.org/book/2445326/eafc04
- Kavtaradze, R. Z. (2016). Lokal'niy teploobmen v porshnevyh dvigatelyah. Moscow: Izd-vo MGTU im. N.E. Baumana, 520.
- Kavtaradze, R. Z. (2016). Teoriya porshnevyh dvigateley. Spetsial'nye glavy. Moscow: MGTU im. N.E. Baumana, 589. Available at: https://ua1lib.org/book/4988543/f696f3
- Caton, J. A. (Ed.) (2015). An Introduction to Thermodynamic Cycle Simulations for Internal Combustion Engines. John Wiley & Sons, Ltd, 367. doi: https://doi.org/10.1002/9781119037576
- Heywood, J. B. (2018). Internal Combustion Engine Fundamentals. McGraw-Hill Education. Available at: https://www.accessengineeringlibrary.com/content/book/9781260116106
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Владимир Анатольевич Корогодский, Андрей Сергеевич Роговой, Александр Иванович Воронков, Андрей Павлович Поливянчук, Павел Григорьевич Гакал, Алексей Юрьевич Лисица, Игорь Валентинович Худяков, Тамара Владимировна Макарова, Мария Михайловна Гнип, Евгений Анатольевич Гаек

This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.





