Development of a technique for computer simulation of the stress state of the drive drum shell of a belt conveyor to optimize its design parameters

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.229213

Keywords:

conveyor belt, durability, drive drum, stresses, deformation, finite-element method, lining

Abstract

The paper considers the method of computer simulation of the stress-strain state of the drive drum shell in the NASTRAN integrated environment. Due to the complexity of determining stresses and deformations in the drum sections by the analytical method, it is proposed to solve this important problem using the numerical finite-element method. At the preliminary stage of computer modeling, a mechanical design scheme was developed, including a variable pressure that changes depending on the angle of rotation of the drum, the deterministic relations describing the variable force factors are based on the Euler ratio. It is also proposed to take into account the pressure from the variable friction force, which depends on the changing coefficient of adhesion of the belt to the drum.

As a result of the computer calculation, the equivalent Mises stresses of 65 MPa were determined, the safety factor was 4.2 and the components of the tangential stresses were determined using the stress tensor marker, the shear stress reached the level τ=16 MPa for fabric tape and τ=3.14 MPa for rubber tape. According to the results of the calculation, the dependence of the tangential stresses on the angle of rotation of the drum was constructed. A diagram of the change in the component of tangential stresses along the forming shell of the drum was constructed.

Analysis of stress-strain state allowed us to determine the factor of safety of the drum shell. Based on the analysis of equivalent stresses, it is proposed to further calculate the durability of the drum using the method of long-term fatigue. The computer calculation of shear stresses in the component allows choosing the rational parameters of the lining, based on such indicators as peel strength and break, as well as determining the angle 61° of the slab lining required to improve the reliability and traction ability of the pipeline

Author Biographies

Olzhas Jassinbekov, Satbayev University

PhD

Department of Industrial Engineering

Madina Isametova, Satbayev University

PhD, Associate Professor

Department of Industrial Engineering

Gabit Kaldan, Satbayev University

Postgraduate Student

Department of Industrial Engineering

References

  1. Mihailidis, A., Bouras, E., Athanasopoulos, E. (2015). FEM analysis of a belt conveyor driving drum. 6th BETA CAE International Conference. Available at: https://www.researchgate.net/publication/283500471
  2. Solovykh, D. Ya. (2014). Modelirovanie na EVM napryazhennogo sostoyaniya privodnogo barabana lentochnogo konveyera dlya otsenki dolgovechnosti svarnykh shvov [Computer-aided modeling of stress state of belt driving drum to estimate endurance of joint welds]. Moscow: Gornaya kniga, 12. Available at: https://www.litres.ru/d-solovyh/modelirovanie-na-evm-napryazhennogo-sostoyaniya-privodnogo-barabana-lentochnogo-konveyera-dlya-ocenki-dolgovechnosti-svarnyh-shvov-25285151/
  3. Ananth, K. N. S., Rakesh, V. (2013). Design and Selecting the Proper Conveyor-Belt. International Journal of Advanced Engineering Technology, 4 (2). Available at: https://www.technicaljournalsonline.com/ijeat/VOL%20IV/IJAET%20VOL%20IV%20ISSUE%20II%20APRIL%20JUNE%202013/Vol%20IV%20Issue%20II%20Article%2012.pdf
  4. Dmitriev, V. G., Asaenko, V. V. (2011). Harakter nagruzheniya obechayki privodnogo barabana lentochnogo konveyera pri peremennom koeffitsiente stsepleniya lenty s ego poverhnost'yu. Gorniy informatsionno-analiticheskiy byulleten' (GIAB), 2, 375–378.
  5. Conveyor Belt Basic Rules and Procedures for Tracking and Training (2006). Besser Service Bulletin.
  6. Conveyor Handbook (2009). Fenner Dunlop. Available at: http://www2.hcmuaf.edu.vn/data/dangnh/file/5_Fenner%20Dunlop_%202009_%20Conveyor%20Handbook.pdf
  7. Rulmeca. Technical Information (2009). Project and Design Criteria for Belt conveyors.
  8. Lodewijks, G., Nuttall, A. J. G. (2007). Dynamics of decentralized driven belt conveyors. 9th International Conference on Bulk Materials Storage, Handling and Transportation, ICBMH 2007.
  9. Solovyh, D. Ya. (2014). Matematicheskaya model' formirovaniya davleniy na privodnom barabane lentochnogo konveyera s uchetom izmenyayuschegosya koeffitsienta stsepleniya. Gorniy informatsionno-analiticheskiy byulleten' (GIAB), spetsvypusk, 12.
  10. Fedorko, G., Beluško, M., Hegedűš, M. (2015). FEA Utilization for Study of the Conveyor Belts Properties in the Context of Internal Logistics Systems. Czech Republic. Available at: http://konsys2.tanger.cz/files/proceedings/24/papers/4619.pdf
  11. Michalik, P., Zajac, J. (2012). Using of computer integrated system for static tests of pipe conveyer belts. Proceedings of the 13th International Carpathian Control Conference (ICCC). doi: https://doi.org/10.1109/carpathiancc.2012.6228691
  12. Affolter, C., Piskoty, G., Koller, R., Zgraggen, M., Rütti, T. F. (2007). Fatigue in the shell of a conveyor drum. Engineering Failure Analysis, 14 (6), 1038–1052. doi: https://doi.org/10.1016/j.engfailanal.2006.11.071
  13. Gulak, M. L. (1998). Issledovanie napryajennogo sostoyaniya i optimizaciya konstruktivnih parametrov barabanov lentochnih konveierov gornih predpriyatii. Moscow, 148. Available at: https://www.dissercat.com/content/issledovanie-napryazhennogo-sostoyaniya-i-optimizatsiya-konstruktivnykh-parametrov-barabanov
  14. Solovih, D. Y. (2018). Razrabotka metoda rascheta ustalostnoi dolgovechnosti privodnih barabanov lentochnih konveierov dlya gornoi promishlennosti. Moscow, 125. Available at: https://misis.ru/files/9582/Solovyh_dis.pdf
  15. Zhilkin, V. A. (2013). Azbuka injenernih raschetov v MSC Patran-Nastran-Marc. Sankt-Peterburg: Prospekt Nauki, 576. Available at: http://www.iprbookshop.ru/35886.html
  16. Kim, J. K., Shim, H. J., Kim, C. S. (2006). Durability Analysis of the Pulley in the Power Steering System Considering the Variation of the Fatigue Strength. Key Engineering Materials, 306-308, 429–434. doi: https://doi.org/10.4028/www.scientific.net/kem.306-308.429
  17. Povetkin, V. V., Isametova, М. Е., Isayeva, I. N., Bukayeva, A. Z. (2018). Dynamic modeling of ball mill drive with regard to damping properties of its elements. Mining Informational and Analytical Bulletin, 5, 184–192. doi: https://doi.org/10.25018/0236-1493-2018-5-0-184-192
  18. Fatemi, A. (2004). Fatigue behavior and life predictions of notched specimens made of QT and forged microalloyed steels. International Journal of Fatigue, 26 (6), 663–672. doi: https://doi.org/10.1016/j.ijfatigue.2003.10.005
  19. Ragan, P., Manuel, L. (2007). Comparing Estimates of Wind Turbine Fatigue Loads Using Time-Domain and Spectral Methods. Wind Engineering, 31 (2), 83–99. doi: https://doi.org/10.1260/030952407781494494
  20. Solovih, D. Ya. (2014). Matematicheskaya model' formirovaniya davleniy na privodnom barabane lentochnogo konveyera s uchetom izmenyayuschegosya koeffitsienta stsepleniya. Moscow, 7. Available at: https://globalf5.com/Knigi/Nauka-Obrazovanie/Inzhnnerno-tehnicheskie-nauki/prikladnaya-geologiya-i/Gornoe-delo/Matematicheskaya-model-formirovaniya_176123
  21. Zenkov, R. L., Ivashkov, I. I., Kolobov, L. N. (1987). Mashini neprerivnogo transporta. Moscow: Mashinostroenie, 432. Available at: https://www.studmed.ru/zenkov-rl-ivashkov-ii-kolobov-ln-mashiny-nepreryvnogo-transporta_2ff26c75477.html
  22. Ushakov, Ye. N., Kostrykin, A. P., Shaidulin, K. V., Merzliakov, P. Ye. (2011). Methods of belt conveyor drive drum rubber lining laboratory tests conducting. Vestnik nauchnogo tsentra po bezopasnosti rabot v ugol'noy promyshlennosti. Available at: https://cyberleninka.ru/article/n/metodika-provedeniya-laboratornyh-ispytaniy-rezinovoy-futerovki-privodnyh-barabanov-lentochnyh-konveyerov
  23. Affolter, C., Piskoty, G., Koller, R., Zgraggen, M., Rütti, T. F. (2007). Fatigue in the shell of a conveyor drum. Engineering Failure Analysis, 14 (6), 1038–1052. doi: https://doi.org/10.1016/j.engfailanal.2006.11.071

Downloads

Published

2021-04-30

How to Cite

Jassinbekov, O., Isametova, M., & Kaldan, G. (2021). Development of a technique for computer simulation of the stress state of the drive drum shell of a belt conveyor to optimize its design parameters . Eastern-European Journal of Enterprise Technologies, 2(7 (110), 31–39. https://doi.org/10.15587/1729-4061.2021.229213

Issue

Section

Applied mechanics