Determining the thermal mode of bio-based raw materials composting process in a rotary-type chamber
DOI:
https://doi.org/10.15587/1729-4061.2021.230211Keywords:
heat transfer coefficient, specific active heat generation, substrate, composting, fermentation, rotary chamberAbstract
One of the promising methods to dispose of agricultural bio-based raw materials is to produce compost by aerobic fermentation in rotary chambers. High efficiency of the composting process is achieved when a proper temperature mode is maintained at each phase of the process. Changes in temperature are directly related to the effective transformation of organic substrates by microorganisms and are the reason for the low quality of produced compost in terms of its agrochemical and microbiological parameters.
It was established that a high-temperature regime is achieved on the condition that the amount of heat released during the biodegradation of raw materials by microorganisms is greater than the heat loss associated with the substrate aeration and surface cooling. Therefore, the time during which the fermented mass remains warm depends entirely on the substrate's physical-chemical characteristics, the parameters of the equipment, and the modes of its operation.
To describe the established conditions, based on the equation of thermal balance, a mathematical model has been built. The model relates the thermal costs necessary to maintain the optimal temperature regime of the process to the substrate's moisture content and specific active heat generation, as well as to such an important thermal physical parameter of the chamber as the coefficient of heat transfer of the wall material.
A rotary chamber was manufactured to investigate the thermal mode of the bio-based raw materials composting process. It has been experimentally established that the chamber walls' heat transfer coefficient of 1.6 W/(m2·°C), a value of the substrate's specific active heat generation of 9.2 W/kg, and a moisture content of 58 % provide for the thermal needs for the process with the release of 140 MJ of excess heat.
The reported study could be the basis for the modernized methodology of thermal calculations of the bio-based raw materials composting process in closed fermentation chambers
References
- Hemati, A., Aliasgharzad, N., Khakvar, R., Khoshmanzar, E., Asgari Lajayer, B., van Hullebusch, E. D. (2021). Role of lignin and thermophilic lignocellulolytic bacteria in the evolution of humification indices and enzymatic activities during compost production. Waste Management, 119, 122–134. doi: https://doi.org/10.1016/j.wasman.2020.09.042
- Arora, S., Rani, R., Ghosh, S. (2018). Bioreactors in solid state fermentation technology: Design, applications and engineering aspects. Journal of Biotechnology, 269, 16–34. doi: https://doi.org/10.1016/j.jbiotec.2018.01.010
- Jaramillo, A. C., Cobas, M., Hormaza, A., Sanromán, M. Á. (2017). Degradation of Adsorbed Azo Dye by Solid-State Fermentation: Improvement of Culture Conditions, a Kinetic Study, and Rotating Drum Bioreactor Performance. Water, Air, & Soil Pollution, 228 (6). doi: https://doi.org/10.1007/s11270-017-3389-2
- Kauser, H., Pal, S., Haq, I., Khwairakpam, M. (2020). Evaluation of rotary drum composting for the management of invasive weed Mikania micrantha Kunth and its toxicity assessment. Bioresource Technology, 313, 123678. doi: https://doi.org/10.1016/j.biortech.2020.123678
- Shikata, A., Sermsathanaswadi, J., Thianheng, P., Baramee, S., Tachaapaikoon, C., Waeonukul, R. et. al. (2018). Characterization of an Anaerobic, Thermophilic, Alkaliphilic, High Lignocellulosic Biomass-Degrading Bacterial Community, ISHI-3, Isolated from Biocompost. Enzyme and Microbial Technology, 118, 66–75. doi: https://doi.org/10.1016/j.enzmictec.2018.07.001
- Radziemska, M., Mazur, Z. (2015). Effect of compost from by-product of the fishing industry on crop yield and microelement content in maize. Journal of Ecological Engineering, 16, 168–175. doi: https://doi.org/10.12911/22998993/59378
- Jiang, Z., Li, X., Li, M., Zhu, Q., Li, G., Ma, C. et. al. (2021). Impacts of red mud on lignin depolymerization and humic substance formation mediated by laccase-producing bacterial community during composting. Journal of Hazardous Materials, 410, 124557. doi: https://doi.org/10.1016/j.jhazmat.2020.124557
- Duan, Y., Awasthi, S. K., Liu, T., Verma, S., Wang, Q., Chen, H. et. al. (2019). Positive impact of biochar alone and combined with bacterial consortium amendment on improvement of bacterial community during cow manure composting. Bioresource Technology, 280, 79–87. doi: https://doi.org/10.1016/j.biortech.2019.02.026
- Liu, H., Wang, L., Lei, M. (2019). Positive impact of biochar amendment on thermal balance during swine manure composting at relatively low ambient temperature. Bioresource Technology, 273, 25–33. doi: https://doi.org/10.1016/j.biortech.2018.10.033
- Wang, Y., Pang, L., Liu, X., Wang, Y., Zhou, K., Luo, F. (2016). Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor. Bioresource Technology, 206, 164–172. doi: https://doi.org/10.1016/j.biortech.2016.01.097
- Ahn, H. K., Richard, T. L., Choi, H. L. (2007). Mass and thermal balance during composting of a poultry manure – Wood shavings mixture at different aeration rates. Process Biochemistry, 42(2), 215–223. doi: https://doi.org/10.1016/j.procbio.2006.08.005
- Smith, B. A. M., Eudoxie, G., Stein, R., Ramnarine, R., Raghavan, V. (2020). Effect of neem leaf inclusion rates on compost physico-chemical, thermal and spectroscopic stability. Waste Management, 114, 136–147. doi: https://doi.org/10.1016/j.wasman.2020.06.026
- He, X., Han, L., Huang, G. (2020). Analysis of regulative variables on greenhouse gas emissions and spatial pore gas concentrations with modeling during large-scale trough composting. Journal of Cleaner Production, 277, 124066. doi: https://doi.org/10.1016/j.jclepro.2020.124066
- Korolev, S. A., Maykov, D. V. (2012). Identification of a mathematical model and research of the various modes of methanogenesis in mesophilic environments. Computer Research and Modeling, 4 (1), 131–141. doi: https://doi.org/10.20537/2076-7633-2012-4-1-131-141
- Uvarov, R., Briukhanov, A., Spesivtsev, A., Spesivtsev, V. (2017). Mathematical model and operation modes of drum-type biofermenter. Proceedings of 16th International Scientific Conference “Engineering for Rural Development”. Jelgava, 1006–1011. doi: https://doi.org/10.22616/erdev2017.16.n212
- Malakov, Yu. F., Sokolov, A. V. (2008). Model' protsessa raboty ustroystva dlya pererabotki organicheskih othodov. Aktual'nye problemy nauki v APK: Materialy 59-y mezhdunarodnoy nauchno-prakticheskoy konferentsii: Vol. 3. Kostroma: Izd. KGSHA, 166–169.
- Irvine, G., Lamont, E. R., Antizar-Ladislao, B. (2010). Energy from Waste: Reuse of Compost Heat as a Source of Renewable Energy. International Journal of Chemical Engineering, 2010, 1–10. doi: https://doi.org/10.1155/2010/627930
- Kaya, K., Ak, E., Yaslan, Y., Oktug, S. F. (2021). Waste-to-Energy Framework: An intelligent energy recycling management. Sustainable Computing: Informatics and Systems, 30, 100548. doi: https://doi.org/10.1016/j.suscom.2021.100548
- Ghaly, A. E., Alkoaik, F., Snow, A. (2006). Thermal balance of invessel composting of tomato plant residues. Canadian Biosystems Engineering, 48, 6.1–6.11.
- Bach, P. D., Nakasaki, K., Shoda, M., Kubota, H. (1987). Thermal balance in composting operations. Journal of Fermentation Technology, 65 (2), 199–209. doi: https://doi.org/10.1016/0385-6380(87)90165-8
- Alkoaik, F., Abdel-Ghany, A., Rashwan, M., Fulleros, R., Ibrahim, M. (2018). Energy Analysis of a Rotary Drum Bioreactor for Composting Tomato Plant Residues. Energies, 11 (2), 449. doi: https://doi.org/10.3390/en11020449
- Santos, D. A., Dadalto, F. O., Scatena, R., Duarte, C. R., Barrozo, M. A. S. (2015). A hydrodynamic analysis of a rotating drum operating in the rolling regime. Chemical Engineering Research and Design, 94, 204–212. doi: https://doi.org/10.1016/j.cherd.2014.07.028
- Toundou, O., Pallier, V., Feuillade-Cathalifaud, G., Tozo, K. (2021). Impact of agronomic and organic characteristics of waste composts from Togo on Zea mays L. nutrients contents under water stress. Journal of Environmental Management, 285, 112158. doi: https://doi.org/10.1016/j.jenvman.2021.112158
- Hryshchuk, Yu. S. (2008). Osnovy naukovykh doslidzhen. Kharkiv: NTU «KhPI», 232.
- Mel'nikov, S. V., Atselkin, V. R., Roschin, P. M. (1980). Planirovanie eksperimenta v issledovaniyah sel'skohozyaystvennyh protsessov. Leningrad: Kolos, 168.
- Krishna, C. (2005). Solid-State Fermentation Systems – An Overview. Critical Reviews in Biotechnology, 25 (1-2), 1–30. doi: https://doi.org/10.1080/07388550590925383
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Геннадий Анатольевич Голуб, Иван Григорович Грабар, Дмитрий Аксентиевич Деревянко, Анна Анатолиевна Голубенко, Александр Васильевич Медведский, Вячеслав Владимирович Чуба, Александр Алексеевич Соларев, Тамара Александровна Билько, Максим Юрьеович Павленко, Анатолий Васильевич Саенко
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.