Features of heating hardening reinforced concrete process design and control by the internal heat sources
DOI:
https://doi.org/10.15587/1729-4061.2014.23349Keywords:
concrete, hardening in the cold, internal heat sources, temperature fields modelingAbstract
Thermal processes, occurring during heating the concrete, hardening in the cold are analyzed. The features of hardening concrete heating process design and control are analyzed. The objective of the work, which lies in lowering energy consumption through optimal design and control of technological processes, which use intense heating of concrete products in construction, is formulated. Basic problems such as analyzing the causes of energy loss during electrical heating of concrete by internal heat sources, constructing a mathematical model of heat transfer processes at such heating method and experimental verification of the developed model are stated and solved.
The mathematical model, used in the design and control to optimize electricity expenditure for heating is built. Accuracy of the proposed model is confirmed experimentally by comparing the calculation results with the data, obtained by direct and indirect measurement of temperature fields. The problem of optimizing heat transfer in hardening concrete, based on the proposed heating model is considered. The objective optimization function – total electricity consumption in heaters is outlined. Optimizing arguments - the distance between heaters and their diameters, as well as current in heaters, are formulated. Limitations - the range of variation in average temperature on the concrete part surface and the maximum permissible value of the surface temperature spread are highlighted. The conditions and assumptions, made when stating and solving optimization problems are formulated.
References
- Уход за твердеющим бетоном [Электронный ресурс] / Режим доступа: <http://woodroads.ru/tehnologiya-stroitelstvapokrytii/82-uhod.html>. – 06.05.12.
- Шоробура, Н. Н. Решение задач многокритериальной оптимизации сложных объектов и систем [Текст] / Н. Н. Шоробура // ДонНТУ. – Режим доступа: http://www.masters.donntu.edu.ua/publ2004/kita/kita_shorobura.pdf. – 14.09.2013.
- Petrov, N. New approach to the non-classical heat conduction [Text] / N. Petrov, A. Szekeres // Journal of Theoretical and Applied Mechanics, Sofia, 2008, vol. 38, No. 3, pp. 61-70.
- Иванова, Л. А. Исследование теплового режима стержня с теплофизической защитой [Текст] / Л. А. Иванова, А. А. Бондарь // Металлургическая и горнорудная промышленность. – Днепропетровск. – 2007. – № 2. – С. 28 – 30.
- The experimental and numerical investigation of the solidification of a porous ceramic casting / F. Kavicka, J. Dobrovska, K. Stransky, B. Sekanina, J. Stetina / Frontiers in Heat and Mass Transfer (FHMT), 3, 023002 (2012) // ISSN: 2151-8629.
- Арбеньев, А. С. Возникновение и развитие технологии бетонирования с электроразогревом смеси [Текст] / А. С. Арбеньев // Промышленный вестник. – 1998. – № 6 – 7. – С. 8 – 12.
- Становський, О. Л. Использование четырехмерной симметрии пространства-времени при электрическом моделировании тепловых процессов [Текст] / О. Л. Становський, Т. В. Лисенко, А. С. Балан // Наукові праці Одеської національної академії зв’язку ім. О. С. Попова. – 2003. – № 3. – С. 48 – 51.
- Алмаметов, В. Б. Моделирование нестационарных тепловых полей электрорадиоэлементов [Текст] / В. Б. Алмаметов, А. В. Авдеев, А. В. Затылкин // Труды международного симпозиума ≪Надежность и качество≫. Том 2. – Пенза, 2010. – С. 16 – 22.
- Оборский, Г. А. Метод измерения тепловых параметров затвердевания бетона по инфракрасным видеопотокам от поверхности детали [Текст] / Г. А. Оборский, Л. В. Бовнегра, Ю. В. Шихирева // Інформаційні технології в освіті, науці та виробництві: зб. наук. праць. – 2013 – Вип. 1(2). – С. 33 – 40.
- Оборский, Г. А. Измерение параметров внутренних тепловых процессов по инфракрасным видеопотокам от поверхности детали [Текст] : зб. наук. праць / Г. А. Оборский, В. М. Рязанцев, Ю. В. Шихирева // Сучасні технології в машинобудуванні. – 2013. – Вип. 8. – С. 124 – 132.
- Uhod za tverdeyuchim betonom (06.05.12). Available at: <http://woodroads.ru/tehnologiya-stroitelstva-pokrytii/82-uhod.html>.
- Shorbura, N. N. (14.09.2013). Resheniya zadach mnogokriterialnoy оptimizetcii slozhnuh оbyectov i sistem. Available at: <http://www.masters.donntu.edu.ua/ publ2004/kita/kita_shorobura.pdf>.
- Petrov, N. (2008). New approach to the non-classical heat conduction. Journal of Theoretical and Applied Mechanics, Sofia, Vol. 38, No. 3, 61-70.
- Ivanova, L. A., Bondar, A. A. (2007). Issledovanie teplovogo rezhima sterzhnya s teplofizicheskoy zaschitoy. Metallurgicheskaya i gornorudnaya promyishlennost, Dnepropetrovsk, Vol. 2, 28 – 30.
- Kavicka, F., Dobrovska, J., Stransky, K., Sekanina, B., Stetina, J. (2012). The experimental and numerical investigation of the solidification of a porous ceramic casting. Frontiers in Heat and Mass Transfer (FHMT), 3, 023002.
- Arbenev, A. S. (1998). Vozniknovenie i razvitie tehnologii betonirovaniya s elektrorazogrevom smesi. Promyishlennyiy vestnik. Vol. 6–7, 8–12.
- Stanovskiy, O. L., Lisenko, T. V., Balan, A. S. (2003). Ispolzovanie chetyirehmernoy simmetrii prostranstva-vremeni pri elektricheskom modelirovanii teplovyih protsessov. Naukovi pratsi Odeskoyi natsionalnoyi akademiyi zvuyazku Im. O.S. Popova. Vol. 3, 48 – 51.
- Almametov, V. B., Avdeev, A. V., Zatyilkin, A. V. (2010). Modelirovanie nestatsionarnyih teplovyih poley elektroradioelementov. Trudyi mezhdunarodnogo simpoziuma «Nadezhnost I kachestvo». Penza, 2.
- Оborsky, G. А., Bovnegra, L. V., Shuchereva, U. V. (2013). Metod izmereniya teplovuch parametrov zatverdevaniya betona pо infracrasnum videopotocam оt poverchnosti detail. Іnformatziyni technologii v osviti, nautzi ta vurobnutztvi, Vol. 1(2), 33–40.
- Оborsky, G. А., Ryazantzev, V. M., Shuchereva, U. V. (2013). Izmereniye parametrov vnutrennich teplovuch protzesov po infracrasnum videopotocam ot poverchnosti detail. Cuchasni technologyi v mashinobuduvanni, Vol. 8, 124–132.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Юлия Владимировна Шихирева, Геннадий Александрович Оборский, Оксана Степановна Савельева
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.