Determining the efficiency and parameters of rubble strip reinforcement

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.235416

Keywords:

rubble strip, bounding surface, metal mesh, physical modeling, strength condition, reinforcement parameters

Abstract

The necessity of development and improvement of methods and means for the protection of preparatory roadways, in particular, protective structures, was proved on the basis of ordinary rock with binding surfaces. Analysis of the results of the study on the use of protective structures of ordinary rock and bounding surfaces was performed. It has shown the feasibility of reinforcing rock structures to ensure operational conditions for the protected roadways. Such structures include rubble strips reinforced with partitions made of metal mesh. To determine their efficiency and reinforcement parameters, studies were performed using provisions of structural mechanics, soil mechanics, and bulk media, as well as physical modeling using natural materials.

According to the results obtained in the performed studies, the efficiency of reinforcement of rubble strips with a metal grid was proved and a procedure for calculation of reinforcement parameters that need to be considered in designing the above structures was developed. Such parameters include width and height of the strip, class of reinforcement, its diameter and tensile strength, size of the grid cells, angle of internal friction of rocks, and diameter of maximum rock pieces in the strip.

It was established that reinforcement of the rubble strip by partitions made of metal meshes can reduce the width of the strip and volume of the rock fill by 1.33…2.66 times without losing the structure rigidity. To do this, the condition of reinforcement strength in grids must be met. It consists of comparing its tensile strength with maximum stresses in the partition. These stresses are determined by the magnitude of the load on the rubble strip from the roof rocks, the diameter of the reinforcement, and the maximum rock pieces, as well as relative extensional strain in reinforcement.

Author Biographies

Serhii Nehrii, Donetsk National Technical University

PhD, Associate Professor

Department of Mining of Mineral Deposits

Andrii Surzhenko, Donetsk National Technical University

PhD, Associate Professor, Dean

Faculty of Mechanical Engineering, Ecology and Chemical Technologies

Тetiana Nehrii, Donetsk National Technical University

PhD, Associate Professor

Department of Mining of Mineral Deposits

Andrii Toporov, Donetsk National Technical University

PhD, Head of Department

Department of Extractive and Processing Complexes Equipment

Eduard Fesenko, LLC Technical University Metinvest Polytechnic

PhD, Associate Professor

Department of Organization and Production Automation

Yevhen Pavlov, LLC Technical University Metinvest Polytechnic

PhD, Associate Professor

Department of Organization and Production Automation

Mykola Domnichev, Kryvyi Rih National University

PhD, Associate Professor

Department of Labor Protection and Civil Security

References

  1. Bondarenko, V., Symanovych, H., Kicki, J., Barabash, M., Salieiev, I. (2019). The influence of rigidity of the collapsed roof rocks in the mined-out space on the state of the preparatory mine workings. Mining of Mineral Deposits, 13 (2), 27–33. doi: https://doi.org/10.33271/mining13.02.027
  2. Shi, X., Jing, H., Ning, J., Zhao, Z., Zhu, J. (2020). Stability Control of Gob-Side Entry Retaining in Fully Mechanized Caving Face Based on a Compatible Deformation Model. Computer Modeling in Engineering & Sciences, 124 (1), 315–343. doi: https://doi.org/10.32604/cmes.2020.07955
  3. Gong, P., Ma, Z., Zhang, R. R., Ni, X., Liu, F., Huang, Z. (2017). Surrounding Rock Deformation Mechanism and Control Technology for Gob-Side Entry Retaining with Fully Mechanized Gangue Backfilling Mining: A Case Study. Shock and Vibration, 2017, 1–15. doi: https://doi.org/10.1155/2017/6085941
  4. Zhou, P., Wang, Y., Zhu, G., Gao, Y. (2019). Comparative analysis of the mine pressure at non-pillar longwall mining by roof cutting and traditional longwall mining. Journal of Geophysics and Engineering, 16 (2), 423–438. doi: https://doi.org/10.1093/jge/gxz026
  5. Wang, X., Xie, J., Xu, J., Zhu, W., Wang, L. (2021). Effects of Coal Mining Height and Width on Overburden Subsidence in Longwall Pier-Column Backfilling. Applied Sciences, 11 (7), 3105. doi: https://doi.org/10.3390/app11073105
  6. Nehrii, S., Sakhno, S., Sakhno, I., Nehrii, T. (2018). Analyzing kinetics of deformation of boundary rocks of mine workings. Mining of Mineral Deposits, 12 (4), 115–120. doi: https://doi.org/10.15407/mining12.04.115
  7. Galvin, J. M. (2016) Ground Engineering - Principles and Practices for Underground Coal Mining. Springer, 684. doi: https://doi.org/10.1007/978-3-319-25005-2
  8. Qi, F., Ma, Z. (2019). Investigation of the Roof Presplitting and Rock Mass Filling Approach on Controlling Large Deformations and Coal Bumps in Deep High-Stress Roadways. Latin American Journal of Solids and Structures, 16 (4). doi: https://doi.org/10.1590/1679-78255586
  9. Iordanov, I., Novikova, Y., Simonova, Y., Korol, A., Podkopayev, Y., Kayun, O. et. al. (2020). Determining stability conditions for haulage drifts protected by coal pillars. Eastern-European Journal of Enterprise Technologies, 6 (1 (108)), 72–81. doi: https://doi.org/10.15587/1729-4061.2020.216530
  10. Mishra, B., Tang, X. (2015). Stability analyses of bleeder pillars in longwall mines by displacement-discontinuity method. International Journal of Mining Science and Technology, 25 (6), 933–941. doi: https://doi.org/10.1016/j.ijmst.2015.09.009
  11. Feng, G., Wang, P., Chugh, Y. P., Zhao, J., Wang, Z., Zhang, Z. (2018). A Coal Burst Mitigation Strategy for Tailgate during Deep Mining of Inclined Longwall Top Coal Caving Panels at Huafeng Coal Mine. Shock and Vibration, 2018, 1–18. doi: https://doi.org/10.1155/2018/5929785
  12. Ngwenyama, P. L. (2017). Factors and challenges affecting coal recovery by opencast pillar mining in the Witbank coalfield. Journal of the Southern African Institute of Mining and Metallurgy, 117 (3), 215–222. doi: https://doi.org/10.17159/2411-9717/2017/v117n3a2
  13. Skrzypkowski, K. (2020). Decreasing Mining Losses for the Room and Pillar Method by Replacing the Inter-Room Pillars by the Construction of Wooden Cribs Filled with Waste Rocks. Energies, 13 (14), 3564. doi: https://doi.org/10.3390/en13143564
  14. Gao, Y., Liu, D., Zhang, X., He, M. (2017). Analysis and Optimization of Entry Stability in Underground Longwall Mining. Sustainability, 9 (11), 2079. doi: https://doi.org/10.3390/su9112079
  15. Yu, Z., Wen, H., Chen, X., Zhang, C. (2018). Integrated Approaches for Extinguishing the Fire of Coal Pillars in Contiguous Coal Seams. Procedia Engineering, 211, 963–971. doi: https://doi.org/10.1016/j.proeng.2017.12.098
  16. Szurgacz, D., Tutak, M., Brodny, J., Sobik, L., Zhironkina, O. (2020). The Method of Combating Coal Spontaneous Combustion Hazard in Goafs – A Case Study. Energies, 13 (17), 4538. doi: https://doi.org/10.3390/en13174538
  17. Skrzypkowski, K. (2020). Comparative Analysis of the Mining Cribs Models Filled with Gangue. Energies, 13 (20), 5290. doi: https://doi.org/10.3390/en13205290
  18. Ren, Y., Feng, G., Wang, P., Guo, J., Luo, Y., Qian, R. et. al. (2019). Vertical Stress and Deformation Characteristics of Roadside Backfilling Body in Gob-Side Entry for Thick Coal Seams with Different Pre-Split Angles. Energies, 12 (7), 1316. doi: https://doi.org/10.3390/en12071316
  19. Zhao, H. (2019). State-of-the-art of standing supports for gob-side entry retaining technology in China. Journal of the Southern African Institute of Mining and Metallurgy, 119 (11). doi: https://doi.org/10.17159/2411-9717/17/449/2019
  20. Zhang, Q., Zhang, J., Guo, S., Gao, R., Li, W. (2015). Design and application of solid, dense backfill advanced mining technology with two pre-driving entries. International Journal of Mining Science and Technology, 25 (1), 127–132. doi: https://doi.org/10.1016/j.ijmst.2014.12.008
  21. Demin, V. F., Tulepov, N. N., Demin, V. V. (2006). Obosnovanie effektivnogo sposoba ohrany vyemochnyh vyrabotok pri otrabotke malomoschnyh plastov. Trudy universiteta, 4 (25), 45–50.
  22. Litvinov, A. V., Tkachev, V. A., Turkenicheva, O. A. (2000). Pat. No. 2162943 RF. Iskusstvennaya ohrannaya opora. No. 2000101751/03; declareted: 27.01.2000, published: 10.02.2001.
  23. Ivaschenko, V. D., Artamonov, V. N., Kuzyk, I. N., Serdyuchenko, M. V. (1994). Sposoby povysheniya zhestkosti porodnyh opor. Gorniy zhurnal, 3, 50–52.
  24. Bondarenko, Yu. V., Aleksandrov, S. N., Kuzyk, I. N., Bondarenko, A. Yu. (1994). Opredelenie kompressionnyh harakteristik razdelennyh samorazrushayuschimisya prokladkami porodnyh opor so svobodnymi otkosami. Gorniy zhurnal, 3, 1–3.
  25. Kuznetsov, G. I., Leman, A. A. (1983). Tekhnologicheskie skhemy ohrany i podderzhaniya vyemochnyh vyrabotok. Moscow: TsNIEIugol', 27.
  26. Litvinov, A. V. (1995). Pat. No. 2105155 RF. Ustroystvo dlya ohrany vyemochnyh shtrekov. No. 95120706/03; declareted: 08.12.1995; published: 20.02.1998.
  27. Luan, H., Jiang, Y., Lin, H., Wang, Y. (2017). A New Thin Seam Backfill Mining Technology and Its Application. Energies, 10 (12), 2023. doi: https://doi.org/10.3390/en10122023
  28. Kasiyan, M. M., Feldman, E. P., Khazipov, I. V., Nehrii, S. H., Mokrienko, V. M. (2010). Pat. No. 54012 UA. Method for protection of preparatory workings. No. u201004634; declareted: 19.04.2010, published: 25.10.2010, Bul. No. 20.
  29. Kasyan, N. N., Negrey, S. G., Khazipov, I. V. (2007). Laboratory research of bearing rock construction with dividing him of flexible foundation on layers. Fiziko-tekhnicheskie problemy gornogo proizvodstva, 10, 106–111.
  30. Kas'yan, N. N., Samoylov, V. L., Hazipov, I. V. (2008). Rezul'taty laboratornyh ispytaniy opornyh porodnyh konstruktsiy s ispol'zovaniem ogranichivayuschih poverhnostey. Gorniy informatsionno-analiticheskiy byulleten', 3, 240–243.
  31. Nehrii, S., Zhyvohliad, S., Nehrii, T. (2019). Observation of the state of workings at the longwall advancing on the strike. Journal of Donetsk Mining Institute, 2 (45), 16–27. doi: https://doi.org/10.31474/1999-981x-2019-2-16-27
  32. SOU 10.1.00185790.011:2007. Pidhotovchi vyrobky na polohykh plastakh. Vybir kriplennia, sposobiv i zasobiv okhorony (2007). Kyiv: Minvuhleprom Ukrainy, 113.
  33. Ukazaniya po ratsional'nomu raspolozheniyu, ohrane podderzhaniyu gornyh vyrabotok na ugol'nyh shahtah SSSR (1986). Leningrad: VNIMI, 222.
  34. Nehrii, S., Nehrii, T. (2017). Determination of parameters of rock bands with limited suppleness. Visnyk Kremenchutskoho natsionalnoho universytetu imeni Mykhaila Ostrohradskoho, 1, 50–57.
  35. Kolay, P. K., Kumar, S., Tiwari, D. (2013). Improvement of Bearing Capacity of Shallow Foundation on Geogrid Reinforced Silty Clay and Sand. Journal of Construction Engineering, 2013, 1–10. doi: https://doi.org/10.1155/2013/293809
  36. Kawalec, J., Hornicek, L., Rakowski, Z. (2019). Cost Effective Alternative Solution for the Renovation of Concrete Pavements. IOP Conference Series: Materials Science and Engineering, 471, 022041. doi: https://doi.org/10.1088/1757-899x/471/2/022041
  37. Itani, H., Saad, G., Chehab, G. (2016). The use of geogrid reinforcement for enhancing the performance of concrete overlays: An experimental and numerical assessment. Construction and Building Materials, 124, 826–837. doi: https://doi.org/10.1016/j.conbuildmat.2016.08.013
  38. Rakowski, Z. (2017). An Attempt of the Synthesis of Recent Knowledge About Mechanisms Involved in Stabilization Function of Geogrids in Infrastructure Constructions. Procedia Engineering, 189, 166–173. doi: https://doi.org/10.1016/j.proeng.2017.05.027
  39. Drukovanyi, M. F., Matvieiev, S. V., Korchevskyi, B. B. et. al. (2006). Armovani osnovy budivel ta sporud. Vinnytsia: UNIVERSUM-Vinnytsia», 235.
  40. Nehrii, S. H., Nehrii, T. O., Kolomiets, V. O., Iordanov, I. V. (2017). Pat. No. 137375 UA. Sposib okhorony hirnychykh vyrobok. No. a201700437; declareted: 17.01.2017, published: 25.10.2019, Bul. No. 20.
  41. Nehrii, S. H. (2020). Investigation of the features of the load transfer process in ordinary rock structures. Technical Engineering, 2 (86), 171–178. doi: https://doi.org/10.26642/ten-2020-2(86)-171-178
  42. Negrey, S. G. (2011). O vozmozhnosti uvelicheniya nesuschey sposobnosti butovyh polos. Visti Donetskoho hirnychoho instytutu, 1, 179–184.
  43. Yanko, S. V., Hrebonkin, S. S., Kasian, M. M. et. al. (2003). Suchasni problemy provedennia ta pidtrymannia hirnychykh vyrobok hlybokykh shakht. Donetsk: DUNVHO, 256.
  44. Kachurin, V. K. (1956). Gibkie niti s malymi strelkami. Moscow: Gostekhizdat, 224.
  45. DSTU B V.2.6-156:2010. Konstruktsiyi budynkiv i sporud. Betonni ta zalizobetonni konstruktsiyi z vazhkoho betonu. Pravyla proektuvannia (2011). Kyiv: Minrehion Ukrainy, 114.

Downloads

Published

2021-06-30

How to Cite

Nehrii, S., Surzhenko, A., Nehrii Т. ., Toporov, A., Fesenko, E., Pavlov, Y. ., & Domnichev, M. (2021). Determining the efficiency and parameters of rubble strip reinforcement. Eastern-European Journal of Enterprise Technologies, 3(7 (111), 74–83. https://doi.org/10.15587/1729-4061.2021.235416

Issue

Section

Applied mechanics