Influence of yttrium and niobium oxides modifiers on physicochemical and photocatalytic properties of titanium (IV) oxide
DOI:
https://doi.org/10.15587/1729-4061.2021.238347Keywords:
modification, TiO2 photocatalysts, yttrium oxide, niobium oxide, photocatalytic properties, structural characteristics, band gap, water purificationAbstract
The photocatalytic and physicochemical properties of titanium (IV) oxide modified by yttrium and niobium oxides were studied. It is shown that modification is a powerful way to increase the efficiency of catalysts' photocatalytic properties and improve the photocatalytic process as a whole. Commercial and laboratory-synthesized titanium (IV) oxides were used as catalysts for modification. Modification of titanium (IV) oxide powders in an amount of 1 wt. % by appropriate modifiers was performed by the hydrothermal method, after which they were characterized by diffraction and X-ray fluorescence methods. The structural characteristics of modified and non-modified titanium (IV) oxide samples by the method of low-temperature nitrogen adsorption-desorption have been studied. A slight increase in the specific surface area was found: from 61 m2/g to 70 m2/g for the commercial sample and from 172 m2/g to 180 m2/g for the synthesized one in this work. Similar dependencies are observed when studying the optical properties by the spectrophotometric method. Determination of surface properties (surface acidity) of modified and non-modified photocatalysts based on TiO2 showed different effects of modifiers on TiO2 acidity: in the modification by yttrium oxide, the acidity decreases, and in the case of niobium oxide – increases. Studies of photocatalytic and sorption activities with respect to dyes of different nature are not the same – the photocatalytic activity after modification increases, the sorption capacity with the cationic dye decreases, anionic – increases. Additional studies on dye destruction are in full accordance with photocatalytic and sorption experiments.
References
- Horikoshi, S., Serpone, N. (2020). Can the photocatalyst TiO2 be incorporated into a wastewater treatment method? Background and prospects. Catalysis Today, 340, 334–346. doi: https://doi.org/10.1016/j.cattod.2018.10.020
- Das, A., Adak, M. K., Mahata, N., Biswas, B. (2021). Wastewater treatment with the advent of TiO2 endowed photocatalysts and their reaction kinetics with scavenger effect. Journal of Molecular Liquids, 338, 116479. doi: https://doi.org/10.1016/j.molliq.2021.116479
- Kutuzova, A. S., Dontsova, T. A. (2018). Characterization and properties of TiO2–SnO2 nanocomposites, obtained by hydrolysis method. Applied Nanoscience, 9 (5), 873–880. doi: https://doi.org/10.1007/s13204-018-0754-4
- Dontsova, T. A., Kutuzova, A. S., Bila, K. O., Kyrii, S. O., Kosogina, I. V., Nechyporuk, D. O. (2020). Enhanced Photocatalytic Activity of TiO2/SnO2 Binary Nanocomposites. Journal of Nanomaterials, 2020, 1–13. doi: https://doi.org/10.1155/2020/8349480
- Yanushevska, O., Dontsova, T., Nahirniak, S., Alisova, V. (2020). TiO2–ZnO Nanocomposites for Photodegradation of Dyes in Water Bodies. Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications, 719–731. doi: https://doi.org/10.1007/978-3-030-51905-6_49
- Belošević-Čavor, J., Koteski, V., Umićević, A., Ivanovski, V. (2018). Effect of 5d transition metals doping on the photocatalytic properties of rutile TiO2. Computational Materials Science, 151, 328–337. doi: https://doi.org/10.1016/j.commatsci.2018.05.022
- Prakash, J., Samriti, Kumar, A., Dai, H., Janegitz, B. C., Krishnan, V. et. al. (2021). Novel rare earth metal–doped one-dimensional TiO2 nanostructures: Fundamentals and multifunctional applications. Materials Today Sustainability, 13, 100066. doi: https://doi.org/10.1016/j.mtsust.2021.100066
- Zhou, F., Yan, C., Sun, Q., Komarneni, S. (2019). TiO2/Sepiolite nanocomposites doped with rare earth ions: Preparation, characterization and visible light photocatalytic activity. Microporous and Mesoporous Materials, 274, 25–32. doi: https://doi.org/10.1016/j.micromeso.2018.07.031
- Litynska, M., Dontsova, T., Yanushevska, O., Tarabaka, V. (2021). Development of iron-containing sorption materials for water purification from arsenic compounds. Eastern-European Journal of Enterprise Technologies, 2 (10 (110)), 35–42. doi: https://doi.org/10.15587/1729-4061.2021.230216
- Kyrii, S., Dontsova, T., Kosogina, I., Astrelin, I., Klymenko, N., Nechyporuk, D. (2020). Local Wastewater Treatment by Effective Coagulants Based on Wastes. Journal of Ecological Engineering, 21 (5), 34–41. doi: https://doi.org/10.12911/22998993/122184
- Mykhailenko, N., Makarchuk, O., Dontsova, T., Gorobets, S., Astrelin, I. (2015). Purification of aqeous media by magnetically operated saponite sorbents. Eastern-European Journal of Enterprise Technologies, 4 (10 (76)), 13–20. doi: https://doi.org/10.15587/1729-4061.2015.46573
- Wetchakun, K., Wetchakun, N., Sakulsermsuk, S. (2019). An overview of solar/visible light-driven heterogeneous photocatalysis for water purification: TiO2- and ZnO-based photocatalysts used in suspension photoreactors. Journal of Industrial and Engineering Chemistry, 71, 19–49. doi: https://doi.org/10.1016/j.jiec.2018.11.025
- Tichapondwa, S. M., Newman, J. P., Kubheka, O. (2020). Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Physics and Chemistry of the Earth, Parts A/B/C, 118-119, 102900. doi: https://doi.org/10.1016/j.pce.2020.102900
- Jiménez-Tototzintle, M., Ferreira, I. J., da Silva Duque, S., Guimarães Barrocas, P. R., Saggioro, E. M. (2018). Removal of contaminants of emerging concern (CECs) and antibiotic resistant bacteria in urban wastewater using UVA/TiO2/H2O2 photocatalysis. Chemosphere, 210, 449–457. doi: https://doi.org/10.1016/j.chemosphere.2018.07.036
- Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K. et. al. (2020). Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. Journal of Cleaner Production, 268, 121725. doi: https://doi.org/10.1016/j.jclepro.2020.121725
- Pillai, K. (2021). Single crystalline rutile TiO2 nanorods synthesis by onestep catalyst-free vapor transport method. Solid State Communications, 333, 114342. doi: https://doi.org/10.1016/j.ssc.2021.114342
- Garzon-Roman, A., Zuñiga-Islas, C., Quiroga-González, E. (2020). Immobilization of doped TiO2 nanostructures with Cu or In inside of macroporous silicon using the solvothermal method: Morphological, structural, optical and functional properties. Ceramics International, 46 (1), 1137–1147. doi: https://doi.org/10.1016/j.ceramint.2019.09.082
- Kosohin, O., Makohoniuk, O., Kushmyruk, A. (2019). Electrochemical Oxidation of Thiocyanate on Metal Oxide Electrodes. Materials Today: Proceedings, 6, 219–226. doi: https://doi.org/10.1016/j.matpr.2018.10.097
- Wang, W., Zhang, F., Zhang, C., Wang, Y., Tao, W., Cheng, S., Qian, H. (2017). TiO2 composite nanotubes embedded with CdS and upconversion nanoparticles for near infrared light driven photocatalysis. Chinese Journal of Catalysis, 38 (11), 1851–1859. doi: https://doi.org/10.1016/s1872-2067(17)62929-2
- Qian, R., Zong, H., Schneider, J., Zhou, G., Zhao, T., Li, Y. et. al. (2019). Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview. Catalysis Today, 335, 78–90. doi: https://doi.org/10.1016/j.cattod.2018.10.053
- Kutuzova, A., Dontsova, T. (2017). Synthesis, characterization and properties of titanium dioxide obtained by hydrolytic method. 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP). doi: https://doi.org/10.1109/nap.2017.8190182
- Asjad, M., Arshad, M., Zafar, N. A., Khan, M. A., Iqbal, A., Saleem, A., Aldawsari, A. (2021). An intriguing case of morphology control and phase transitions in TiO2 nanostructures with enhanced photocatalytic activity. Materials Chemistry and Physics, 265, 124416. doi: https://doi.org/10.1016/j.matchemphys.2021.124416
- Parnicka, P., Mazierski, P., Lisowski, W., Klimczuk, T., Nadolna, J., Zaleska-Medynska, A. (2019). A new simple approach to prepare rare-earth metals-modified TiO2 nanotube arrays photoactive under visible light: Surface properties and mechanism investigation. Results in Physics, 12, 412–423. doi: https://doi.org/10.1016/j.rinp.2018.11.073
- Lin, J., Yu, J. C. (1998). An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air. Journal of Photochemistry and Photobiology A: Chemistry, 116 (1), 63–67. doi: https://doi.org/10.1016/s1010-6030(98)00289-5
- Shaari, N., Tan, S., Mohamed, A. (2012). Synthesis and characterization of CNT/Ce-TiO2 nanocomposite for phenol degradation. Journal of Rare Earths, 30 (7), 651–658. doi: https://doi.org/10.1016/s1002-0721(12)60107-0
- Prakash, J., Samriti, Kumar, A., Dai, H., Janegitz, B. C., Krishnan, V. et. al. (2021). Novel rare earth metal–doped one-dimensional TiO2 nanostructures: Fundamentals and multifunctional applications. Materials Today Sustainability, 13, 100066. doi: https://doi.org/10.1016/j.mtsust.2021.100066
- Liu, H., Yu, L., Chen, W., Li, Y. (2012). The progress of TiO2 nanocrystals doped with rare earth ions. Journal of Nanomaterials, 2012, 1–9. doi: https://doi.org/10.1155/2012/235879
- Xiuqin, O., Junping, M., Qimin, W., Junmei, Y. (2006). Enhanced Photoactivity of Layered Nanocomposite Materials Containing Rare Earths, Titanium Dioxide and Clay. Journal of Rare Earths, 24 (1), 251–254. doi: https://doi.org/10.1016/s1002-0721(07)60373-1
- Tobaldi, D. M., Sever Škapin, A., Pullar, R. C., Seabra, M. P., Labrincha, J. A. (2013). Titanium dioxide modified with transition metals and rare earth elements: Phase composition, optical properties, and photocatalytic activity. Ceramics International, 39 (3), 2619–2629. doi: https://doi.org/10.1016/j.ceramint.2012.09.027
- Nadolna, J., Arenas-Esteban, D., Gazda, M., Zaleska-Medynska, A. (2014). Pr-doped TiO2. The effect of metal content on photocatalytic activity. Physicochemical Problems of Mineral Processing, 50 (2), 515–524. doi: https://doi.org/10.5277/ppmp140208
- Nadolna, J., Iwulska, A., Sliwinski, G., Zaleska-Medynska, A. (2012). Characterization and photocatalytic activity of rare earth metal-doped titanium dioxide. Physicochemical Problems of Mineral Processing, 48 (1), 201–208.
- Lai, C. W., Juan, J. C., Ko, W. B., Bee Abd Hamid, S. (2014). An Overview: Recent Development of Titanium Oxide Nanotubes as Photocatalyst for Dye Degradation. International Journal of Photoenergy, 2014, 1–14. doi: https://doi.org/10.1155/2014/524135
- Habib, I. Y., Zain, N. M., Lim, C. M., Usman, A., Kumara, N. T. R. N., Mahadi, A. H. (2021). Effect of Doping Rare-Earth Element on the Structural, Morphological, Optical and Photocatalytic Properties of ZnO Nanoparticles in the Degradation of Methylene Blue Dye. IOP Conference Series: Materials Science and Engineering, 1127 (1), 012004. doi: https://doi.org/10.1088/1757-899x/1127/1/012004
- Saqib, N. us, Adnan, R., Shah, I. (2016). A mini-review on rare earth metal-doped TiO2 for photocatalytic remediation of wastewater. Environmental Science and Pollution Research, 23 (16), 15941–15951. doi: https://doi.org/10.1007/s11356-016-6984-7
- Xu, J., Ao, Y., Fu, D., Yuan, C. (2008). A simple route for the preparation of Eu, N-codoped TiO2 nanoparticles with enhanced visible light-induced photocatalytic activity. Journal of Colloid and Interface Science, 328 (2), 447–451. doi: https://doi.org/10.1016/j.jcis.2008.08.053
- Reséndiz López, E., Morales-Luna, M., Vega González, M., Aruna-Devi, R., de Moure-Flores, F., Mayen Hernández, S. A., Santos Cruz, J. (2020). Bandgap modification of titanium dioxide doped with rare earth ions for luminescent processes. Journal of Applied Physics, 128 (17), 175106. doi: https://doi.org/10.1063/5.0021616
- Liang, C., Liu, C., Li, F., Wu, F. (2009). The effect of Praseodymium on the adsorption and photocatalytic degradation of azo dye in aqueous Pr3+-TiO2 suspension. Chemical Engineering Journal, 147 (2-3), 219–225. doi: https://doi.org/10.1016/j.cej.2008.07.004
- Song, L., Zhao, X., Cao, L., Moon, J.-W., Gu, B., Wang, W. (2015). Synthesis of rare earth doped TiO2 nanorods as photocatalysts for lignin degradation. Nanoscale, 7 (40), 16695–16703. doi: https://doi.org/10.1039/c5nr03537f
- Wang, Z., Song, Y., Cai, X., Zhang, J., Tang, T., Wen, S. (2019). Rapid preparation of terbium-doped titanium dioxide nanoparticles and their enhanced photocatalytic performance. Royal Society Open Science, 6 (10), 191077. doi: https://doi.org/10.1098/rsos.191077
- Tobaldi, D. M., Pullar, R. C., Seabra, M. P., Labrincha, J. A. (2014). Fully quantitative X-ray characterisation of Evonik Aeroxide TiO2 P25®. Materials Letters, 122, 345–347. doi: https://doi.org/10.1016/j.matlet.2014.02.055
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Svitlana Kyrii, Tetiana Dontsova, Iryna Kosogina, Valeriia Podopryhor, Alla Serhiienko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.