Вплив модифікаторів оксидів ітрію та ніобію на фізико-хімічні та фотокаталітичні властивостей титану (IV) оксиду

Автор(и)

  • Світлана Олександрівна Кирій Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського", Україна https://orcid.org/0000-0002-2805-7821
  • Тетяна Анатоліївна Донцова Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського", Україна https://orcid.org/0000-0001-8189-8665
  • Ірина Володимирівна Косогіна Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського", Україна https://orcid.org/0000-0002-9795-7110
  • Валерія Олегівна Подопригор Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського", Україна https://orcid.org/0000-0002-5239-0966
  • Алла Олександрівна Сергієнко Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського", Україна https://orcid.org/0000-0002-2153-9836

DOI:

https://doi.org/10.15587/1729-4061.2021.238347

Ключові слова:

модифікування, TiO2 фотокаталізатори, оксид ітрію, оксид ніобію, фотокаталітичні властивості, структурні харатеристики, ширина забороненої зони, очищення води

Анотація

Досліджено фотокаталітичні і фізико-хімічні властивості модифікованого титану (IV) оксиду оксидами ітрію та ніобію. Показано, що модифікування – це потужний спосіб збільшення ефективності фотокаталітичних властивостей каталізаторів, і як результат поліпшення фотокаталітичного процесу в цілому. Як каталізатор для модифікування використовували титану (IV) оксид комерційного і власного виробництва. Модифікування порошків титану (IV) оксиду в кількості 1 % мас. відповідним модифікатором проводили гідротермальним способом, після чого здійснювали їх характеризацію дифракційним і рентгенофлуоресцентним методами аналізу. Досліджено структурні характеристики модифікованих і немодифікованих зразків титану (IV) оксиду методом низькотемпературної адсорбції-десорбції азоту. Встановлено несуттєве збільшення питомої площі поверхні: з 61 м2/г до 70 м2/г для комерційного зразка та з 172 м2/г до 180 м2/г для синтезованого зразка у даній роботі. Аналогічні залежності спостерігаються і в разі дослідження оптичних властивостей спектрофотометричним методом. Визначення поверхневих властивостей (кислотності поверхні) модифікованих і немодифікованих фотокаталізаторів на основі TiO2 показали різний вплив модифікаторів на кислотність TiO2: в разі модифікування оксидом ітрію кислотність зменшується, а в разі оксиду ніобію – збільшується. Дослідження фотокаталітичної і сорбційної активностей по відношенню до барвників різної природи не однакові – фотокаталітична активність після модифікування зростає, сорбційна здатність по відношенню до катіонного барвника падає, аніонного – зростає. Додаткові дослідження щодо деструкції барвників знаходяться в повній відповідності з фотокаталітичними і сорбційними експериментами

Біографії авторів

Світлана Олександрівна Кирій, Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського"

Асистент

Кафедра технології неорганічних речовин, водоочищення та загальної хімічної технології

Тетяна Анатоліївна Донцова, Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського"

Доктор технічних наук, завідувач кафедри

Кафедра технології неорганічних речовин, водоочищення та загальної хімічної технології

Ірина Володимирівна Косогіна, Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського"

Кандидат технічних наук, доцент

Кафедра технології неорганічних речовин, водоочищення та загальної хімічної технології

Валерія Олегівна Подопригор, Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського"

Кафедра технології неорганічних речовин, водоочищення та загальної хімічної технології

Алла Олександрівна Сергієнко, Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського"

Аспірант

Кафедра технології неорганічних речовин, водоочищення та загальної хімічної технології

Посилання

  1. Horikoshi, S., Serpone, N. (2020). Can the photocatalyst TiO2 be incorporated into a wastewater treatment method? Background and prospects. Catalysis Today, 340, 334–346. doi: https://doi.org/10.1016/j.cattod.2018.10.020
  2. Das, A., Adak, M. K., Mahata, N., Biswas, B. (2021). Wastewater treatment with the advent of TiO2 endowed photocatalysts and their reaction kinetics with scavenger effect. Journal of Molecular Liquids, 338, 116479. doi: https://doi.org/10.1016/j.molliq.2021.116479
  3. Kutuzova, A. S., Dontsova, T. A. (2018). Characterization and properties of TiO2–SnO2 nanocomposites, obtained by hydrolysis method. Applied Nanoscience, 9 (5), 873–880. doi: https://doi.org/10.1007/s13204-018-0754-4
  4. Dontsova, T. A., Kutuzova, A. S., Bila, K. O., Kyrii, S. O., Kosogina, I. V., Nechyporuk, D. O. (2020). Enhanced Photocatalytic Activity of TiO2/SnO2 Binary Nanocomposites. Journal of Nanomaterials, 2020, 1–13. doi: https://doi.org/10.1155/2020/8349480
  5. Yanushevska, O., Dontsova, T., Nahirniak, S., Alisova, V. (2020). TiO2–ZnO Nanocomposites for Photodegradation of Dyes in Water Bodies. Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications, 719–731. doi: https://doi.org/10.1007/978-3-030-51905-6_49
  6. Belošević-Čavor, J., Koteski, V., Umićević, A., Ivanovski, V. (2018). Effect of 5d transition metals doping on the photocatalytic properties of rutile TiO2. Computational Materials Science, 151, 328–337. doi: https://doi.org/10.1016/j.commatsci.2018.05.022
  7. Prakash, J., Samriti, Kumar, A., Dai, H., Janegitz, B. C., Krishnan, V. et. al. (2021). Novel rare earth metal–doped one-dimensional TiO2 nanostructures: Fundamentals and multifunctional applications. Materials Today Sustainability, 13, 100066. doi: https://doi.org/10.1016/j.mtsust.2021.100066
  8. Zhou, F., Yan, C., Sun, Q., Komarneni, S. (2019). TiO2/Sepiolite nanocomposites doped with rare earth ions: Preparation, characterization and visible light photocatalytic activity. Microporous and Mesoporous Materials, 274, 25–32. doi: https://doi.org/10.1016/j.micromeso.2018.07.031
  9. Litynska, M., Dontsova, T., Yanushevska, O., Tarabaka, V. (2021). Development of iron-containing sorption materials for water purification from arsenic compounds. Eastern-European Journal of Enterprise Technologies, 2 (10 (110)), 35–42. doi: https://doi.org/10.15587/1729-4061.2021.230216
  10. Kyrii, S., Dontsova, T., Kosogina, I., Astrelin, I., Klymenko, N., Nechyporuk, D. (2020). Local Wastewater Treatment by Effective Coagulants Based on Wastes. Journal of Ecological Engineering, 21 (5), 34–41. doi: https://doi.org/10.12911/22998993/122184
  11. Mykhailenko, N., Makarchuk, O., Dontsova, T., Gorobets, S., Astrelin, I. (2015). Purification of aqeous media by magnetically operated saponite sorbents. Eastern-European Journal of Enterprise Technologies, 4 (10 (76)), 13–20. doi: https://doi.org/10.15587/1729-4061.2015.46573
  12. Wetchakun, K., Wetchakun, N., Sakulsermsuk, S. (2019). An overview of solar/visible light-driven heterogeneous photocatalysis for water purification: TiO2- and ZnO-based photocatalysts used in suspension photoreactors. Journal of Industrial and Engineering Chemistry, 71, 19–49. doi: https://doi.org/10.1016/j.jiec.2018.11.025
  13. Tichapondwa, S. M., Newman, J. P., Kubheka, O. (2020). Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Physics and Chemistry of the Earth, Parts A/B/C, 118-119, 102900. doi: https://doi.org/10.1016/j.pce.2020.102900
  14. Jiménez-Tototzintle, M., Ferreira, I. J., da Silva Duque, S., Guimarães Barrocas, P. R., Saggioro, E. M. (2018). Removal of contaminants of emerging concern (CECs) and antibiotic resistant bacteria in urban wastewater using UVA/TiO2/H2O2 photocatalysis. Chemosphere, 210, 449–457. doi: https://doi.org/10.1016/j.chemosphere.2018.07.036
  15. Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K. et. al. (2020). Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. Journal of Cleaner Production, 268, 121725. doi: https://doi.org/10.1016/j.jclepro.2020.121725
  16. Pillai, K. (2021). Single crystalline rutile TiO2 nanorods synthesis by onestep catalyst-free vapor transport method. Solid State Communications, 333, 114342. doi: https://doi.org/10.1016/j.ssc.2021.114342
  17. Garzon-Roman, A., Zuñiga-Islas, C., Quiroga-González, E. (2020). Immobilization of doped TiO2 nanostructures with Cu or In inside of macroporous silicon using the solvothermal method: Morphological, structural, optical and functional properties. Ceramics International, 46 (1), 1137–1147. doi: https://doi.org/10.1016/j.ceramint.2019.09.082
  18. Kosohin, O., Makohoniuk, O., Kushmyruk, A. (2019). Electrochemical Oxidation of Thiocyanate on Metal Oxide Electrodes. Materials Today: Proceedings, 6, 219–226. doi: https://doi.org/10.1016/j.matpr.2018.10.097
  19. Wang, W., Zhang, F., Zhang, C., Wang, Y., Tao, W., Cheng, S., Qian, H. (2017). TiO2 composite nanotubes embedded with CdS and upconversion nanoparticles for near infrared light driven photocatalysis. Chinese Journal of Catalysis, 38 (11), 1851–1859. doi: https://doi.org/10.1016/s1872-2067(17)62929-2
  20. Qian, R., Zong, H., Schneider, J., Zhou, G., Zhao, T., Li, Y. et. al. (2019). Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview. Catalysis Today, 335, 78–90. doi: https://doi.org/10.1016/j.cattod.2018.10.053
  21. Kutuzova, A., Dontsova, T. (2017). Synthesis, characterization and properties of titanium dioxide obtained by hydrolytic method. 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP). doi: https://doi.org/10.1109/nap.2017.8190182
  22. Asjad, M., Arshad, M., Zafar, N. A., Khan, M. A., Iqbal, A., Saleem, A., Aldawsari, A. (2021). An intriguing case of morphology control and phase transitions in TiO2 nanostructures with enhanced photocatalytic activity. Materials Chemistry and Physics, 265, 124416. doi: https://doi.org/10.1016/j.matchemphys.2021.124416
  23. Parnicka, P., Mazierski, P., Lisowski, W., Klimczuk, T., Nadolna, J., Zaleska-Medynska, A. (2019). A new simple approach to prepare rare-earth metals-modified TiO2 nanotube arrays photoactive under visible light: Surface properties and mechanism investigation. Results in Physics, 12, 412–423. doi: https://doi.org/10.1016/j.rinp.2018.11.073
  24. Lin, J., Yu, J. C. (1998). An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air. Journal of Photochemistry and Photobiology A: Chemistry, 116 (1), 63–67. doi: https://doi.org/10.1016/s1010-6030(98)00289-5
  25. Shaari, N., Tan, S., Mohamed, A. (2012). Synthesis and characterization of CNT/Ce-TiO2 nanocomposite for phenol degradation. Journal of Rare Earths, 30 (7), 651–658. doi: https://doi.org/10.1016/s1002-0721(12)60107-0
  26. Prakash, J., Samriti, Kumar, A., Dai, H., Janegitz, B. C., Krishnan, V. et. al. (2021). Novel rare earth metal–doped one-dimensional TiO2 nanostructures: Fundamentals and multifunctional applications. Materials Today Sustainability, 13, 100066. doi: https://doi.org/10.1016/j.mtsust.2021.100066
  27. Liu, H., Yu, L., Chen, W., Li, Y. (2012). The progress of TiO2 nanocrystals doped with rare earth ions. Journal of Nanomaterials, 2012, 1–9. doi: https://doi.org/10.1155/2012/235879
  28. Xiuqin, O., Junping, M., Qimin, W., Junmei, Y. (2006). Enhanced Photoactivity of Layered Nanocomposite Materials Containing Rare Earths, Titanium Dioxide and Clay. Journal of Rare Earths, 24 (1), 251–254. doi: https://doi.org/10.1016/s1002-0721(07)60373-1
  29. Tobaldi, D. M., Sever Škapin, A., Pullar, R. C., Seabra, M. P., Labrincha, J. A. (2013). Titanium dioxide modified with transition metals and rare earth elements: Phase composition, optical properties, and photocatalytic activity. Ceramics International, 39 (3), 2619–2629. doi: https://doi.org/10.1016/j.ceramint.2012.09.027
  30. Nadolna, J., Arenas-Esteban, D., Gazda, M., Zaleska-Medynska, A. (2014). Pr-doped TiO2. The effect of metal content on photocatalytic activity. Physicochemical Problems of Mineral Processing, 50 (2), 515–524. doi: https://doi.org/10.5277/ppmp140208
  31. Nadolna, J., Iwulska, A., Sliwinski, G., Zaleska-Medynska, A. (2012). Characterization and photocatalytic activity of rare earth metal-doped titanium dioxide. Physicochemical Problems of Mineral Processing, 48 (1), 201–208.
  32. Lai, C. W., Juan, J. C., Ko, W. B., Bee Abd Hamid, S. (2014). An Overview: Recent Development of Titanium Oxide Nanotubes as Photocatalyst for Dye Degradation. International Journal of Photoenergy, 2014, 1–14. doi: https://doi.org/10.1155/2014/524135
  33. Habib, I. Y., Zain, N. M., Lim, C. M., Usman, A., Kumara, N. T. R. N., Mahadi, A. H. (2021). Effect of Doping Rare-Earth Element on the Structural, Morphological, Optical and Photocatalytic Properties of ZnO Nanoparticles in the Degradation of Methylene Blue Dye. IOP Conference Series: Materials Science and Engineering, 1127 (1), 012004. doi: https://doi.org/10.1088/1757-899x/1127/1/012004
  34. Saqib, N. us, Adnan, R., Shah, I. (2016). A mini-review on rare earth metal-doped TiO2 for photocatalytic remediation of wastewater. Environmental Science and Pollution Research, 23 (16), 15941–15951. doi: https://doi.org/10.1007/s11356-016-6984-7
  35. Xu, J., Ao, Y., Fu, D., Yuan, C. (2008). A simple route for the preparation of Eu, N-codoped TiO2 nanoparticles with enhanced visible light-induced photocatalytic activity. Journal of Colloid and Interface Science, 328 (2), 447–451. doi: https://doi.org/10.1016/j.jcis.2008.08.053
  36. Reséndiz López, E., Morales-Luna, M., Vega González, M., Aruna-Devi, R., de Moure-Flores, F., Mayen Hernández, S. A., Santos Cruz, J. (2020). Bandgap modification of titanium dioxide doped with rare earth ions for luminescent processes. Journal of Applied Physics, 128 (17), 175106. doi: https://doi.org/10.1063/5.0021616
  37. Liang, C., Liu, C., Li, F., Wu, F. (2009). The effect of Praseodymium on the adsorption and photocatalytic degradation of azo dye in aqueous Pr3+-TiO2 suspension. Chemical Engineering Journal, 147 (2-3), 219–225. doi: https://doi.org/10.1016/j.cej.2008.07.004
  38. Song, L., Zhao, X., Cao, L., Moon, J.-W., Gu, B., Wang, W. (2015). Synthesis of rare earth doped TiO2 nanorods as photocatalysts for lignin degradation. Nanoscale, 7 (40), 16695–16703. doi: https://doi.org/10.1039/c5nr03537f
  39. Wang, Z., Song, Y., Cai, X., Zhang, J., Tang, T., Wen, S. (2019). Rapid preparation of terbium-doped titanium dioxide nanoparticles and their enhanced photocatalytic performance. Royal Society Open Science, 6 (10), 191077. doi: https://doi.org/10.1098/rsos.191077
  40. Tobaldi, D. M., Pullar, R. C., Seabra, M. P., Labrincha, J. A. (2014). Fully quantitative X-ray characterisation of Evonik Aeroxide TiO2 P25®. Materials Letters, 122, 345–347. doi: https://doi.org/10.1016/j.matlet.2014.02.055

##submission.downloads##

Опубліковано

2021-08-20

Як цитувати

Кирій, С. О., Донцова, Т. А., Косогіна, І. В., Подопригор, В. О., & Сергієнко, А. О. (2021). Вплив модифікаторів оксидів ітрію та ніобію на фізико-хімічні та фотокаталітичні властивостей титану (IV) оксиду. Eastern-European Journal of Enterprise Technologies, 4(6(112), 67–74. https://doi.org/10.15587/1729-4061.2021.238347

Номер

Розділ

Технології органічних та неорганічних речовин