Devising a method for calculating the turboshaft gas turbine engine performance involving a blade-by-blade description of the multi-stage compressor in a two-dimensional setting

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.238538

Keywords:

gas turbine engine, throttle characteristic, axial compressor, blade-by-blade two-dimensional modeling

Abstract

The design and adjustment of modern gas turbine engines significantly rely on the use of numerical research methods.

This paper reports a method devised for calculating the thermogasdynamic parameters and characteristics of a turboshaft gas turbine engine. The special feature of a given method is a two-dimensional blade-by-blade description of the compressor in the engine system. Underlying the calculation method is a nonlinear mathematical model that makes it possible to describe the established processes occurring in individual nodes and in the engine in general. To build a mathematical model, a modular principle was chosen, involving the construction of a system of interrelated and coordinated models of nodes and their elements.

The approach used in modeling a two-dimensional flow in the compressor makes it possible to estimate by calculation a significant number of parameters that characterize its operation.

With the help of the reported method, it is possible to estimate the effect of changing the geometric parameters of the compressor height on the characteristics of the engine. To take into consideration the influence of variable modes of air intake or overflow in various cross-sections along the compressor tract, to determine the effect of the input radial unevenness on the parameters of the compressor and engine in general.

To verify the method described, the calculation of thermogasdynamic parameters and throttle characteristics of a single-stage turboshaft gas turbine engine with a 12-stage axial compressor was performed. Comparison of the calculation results with experimental data showed satisfactory convergence. Thus, the standard deviation of the calculation results from the experimental data is 0.45 % for the compressor characteristics, 0.4 % for power, and 0.15 % for specific fuel consumption.

Development and improvement of methods for calculating the parameters and characteristics of gas turbine engines make it possible to improve the quality of design and competitiveness of locally-made aircraft engines.

Author Biographies

Ludmila Boyko, National Aerospace University "Kharkiv Aviation Institute"

Doctor of Technical Sciences, Professor

Department of Aviation Engines Theory

Vadym Datsenko, National Aerospace University "Kharkiv Aviation Institute"

Postgraduate Student

Department of Aviation Engines Theory

Aleksandr Dyomin, National Aerospace University "Kharkiv Aviation Institute"

PhD

Department of Aviation Engines Theory

Nataliya Pizhankova, National Aerospace University "Kharkiv Aviation Institute"

Assistant

Department of Aviation Engines Theory

References

  1. Kuz’michev, V. S., Ostapyuk, Y. A., Tkachenko, A. Y., Krupenich, I. N., Filinov, E. P. (2017). Comparative Analysis of the Computer-Aided Systems of Gas Turbine Engine Designing. International Journal of Mechanical Engineering and Robotics Research, 6 (1), 28–35. doi: https://doi.org/10.18178/ijmerr.6.1.28-35
  2. Khustochka, A. N., Kaliuzhnyi, I. A. (2010). Mathematical model of the turboshaft gas turbine AI-450M. Aerospace technic and technology, 8 (75), 99–102.
  3. Kurzke, J. (2011). Correlations Hidden in Compressor Maps. Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Wind Turbine Technology. doi: https://doi.org/10.1115/gt2011-45519
  4. Tarasenko, A. A. (2009). Primenenie obobschennyh zavisimostey dlya postroeniya harakteristik kompressorov s pomosch'yu EVM. Aerospace technic and technology, 7 (64), 74–77.
  5. Panov, V. (2009). GasTurboLib: Simulink Library for Gas Turbine Engine Modelling. Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Controls, Diagnostics and Instrumentation; Education; Electric Power; Awards and Honors. doi: https://doi.org/10.1115/gt2009-59389
  6. Alexiou, A., Baalbergen, E. H., Kogenhop, O., Mathioudakis, K., Arendsen, P. (2007). Advanced Capabilities for Gas Turbine Engine Performance Simulations. Volume 1: Turbo Expo 2007. doi: https://doi.org/10.1115/gt2007-27086
  7. Gurevich, O. S., Krasnov, S. E., Golberg, F. D., Smetanin, S. A. (2017). Study for the Effect of Inlet Flow Distortion on a Control Efficiency of Turbofan. 23rd International Symposium on Air Breathing Engines (ISABE 2017). Vol. 3. Manchester, 1976.
  8. Kurzke, J. (2014). An Enhanced Off-Design Performance Model for Single Stage Fans. Volume 1A: Aircraft Engine; Fans and Blowers. doi: https://doi.org/10.1115/gt2014-26449
  9. Klein, C., Wolters, F., Reitenbach, S., Schönweitz, D. (2018). Integration of 3D-CFD Component Simulation Into Overall Engine Performance Analysis for Engine Condition Monitoring Purposes. Volume 1: Aircraft Engine; Fans and Blowers; Marine. doi: https://doi.org/10.1115/gt2018-75719
  10. Pachidis, V., Pilidis, P., Talhouarn, F., Kalfas, A., Templalexis, I. (2004). A Fully Integrated Approach to Component Zooming Using Computational Fluid Dynamics. Journal of Engineering for Gas Turbines and Power, 128 (3), 579–584. doi: https://doi.org/10.1115/1.2135815
  11. Kurzke, J. (2007). About Simplifications in Gas Turbine Performance Calculations. Volume 3: Turbo Expo 2007. doi: https://doi.org/10.1115/gt2007-27620
  12. Romanovsky, G. F., Tarasenko, A. A. (2011). Characteristics of compressors with air rerun devices usage with generalised dependance. Aerospace technic and technology, 9, 51–54.
  13. Boyko, L. G., Karpenko, E. L. (2007). Metod rascheta harakteristik turboval'nogo dvigatelya s poventsovym opisaniem mnogostupenchatogo osevogo kompressora. Vestnik dvigatelestroeniya, 3, 143–146.
  14. Boyko, L. G., Karpenko, E. L., Akhtemenko, U. F. (2013). Method of calculating GTE gas-thermodynamic parameters with blade row description of an axial multistage compressor. VESTNIK of the Samara State Aerospace University, 12 (3-2), 31–39. doi: https://doi.org/10.18287/1998-6629-2013-0-3-2(41)-31-39
  15. Shlyahtenko, S. M., Sosunov, V. A. (Eds.) (1979). Teoriya dvuhkonturnyh turboreaktivnyh dvigateley. Moscow: Mashinostroenie, 218.
  16. Nechaev, Yu. N., Fedorov, R. M., Kotovskiy, V. N., Polev, A. S.; Nechaev, Yu. N. (Ed.) (2006). Teoriya aviatsionnyh dvigateley. Ch. 1. Moscow: VVIA im. prof. N.E. Zhukovskogo, 366.
  17. Nechaev, Yu. N., Fedorov, R. M., Kotovskiy, V. N., Polev, A. S.; Nechaev, Yu. N. (Ed.) (2006). Teoriya aviatsionnyh dvigateley. Ch. 2. Moscow: VVIA im. prof. N.E. Zhukovskogo, 447.
  18. Boyko, L. G., Ershov, V. N., Girich, G. A., Yanevich, V. N. (1989). Metod rascheta dvumernogo techeniya v mnogostupenchatom osevom kompressore. Izvestiya vysshih uchebnyh zavedeniy, 5, 21–23.
  19. Yershov, V. N. (1971). Unstable Conditions of Turbodynamics. Rotating stall. U.S. Air Force Foreign Technology Division Translation. FTD-MT-24-04-71.
  20. Boyko, L. G., Datsenko, V. A., Pizhankova, N. V. (2019). Determination of the throttle performances of a turboshaft gte based on the method of mathematical modeling using one and two-dimensional approaches to the compressor parameters calculation. Aerospace technic and technology, 7, 21–30. doi: https://doi.org/10.32620/aktt.2019.7.03
  21. Turboval'niy dvigatel' TV3-117 (1986). Rukovodstvo po tekhnicheskoy ekspluatatsii. Kniga 3. Available at: https://tehclub.site/storage/products/07-20/turbovalnyy-dvigatel-tvz-117-rukovodstvo-po-tekhnicheskoy-ekspluatatsii.pdf

Downloads

Published

2021-08-31

How to Cite

Boyko, L., Datsenko, V., Dyomin, A., & Pizhankova, N. (2021). Devising a method for calculating the turboshaft gas turbine engine performance involving a blade-by-blade description of the multi-stage compressor in a two-dimensional setting . Eastern-European Journal of Enterprise Technologies, 4(8(112), 59–66. https://doi.org/10.15587/1729-4061.2021.238538

Issue

Section

Energy-saving technologies and equipment