Identification of the features of structural-phase transformations in the processing of waste from the production of high-alloy steels
DOI:
https://doi.org/10.15587/1729-4061.2021.238763Keywords:
oxide anthropogenic waste, alloy steel scale, reduction melting, X-ray phase studiesAbstract
This paper reports a study into the peculiarities of the structural-phase composition of the alloy obtained by using anthropogenic waste from the production of high-alloy steels involving reduction melting. That is necessary for determining the technological parameters that could help decrease the loss of alloying elements in the process of obtaining and using a doped alloy. This study has shown that at an O:C ratio in the charge of 1.84, the alloy consisted mainly of the solid solution of carbon and alloying elements in α-Fe. The manifestation of Fe3C C carbide with alloying elements as substitution atoms was of relatively weak intensity. At the O:C ratios in the charge of 1.42 and 1.17, there was an increase in the intensity of the Fe3C carbide manifestation. At the same time, the emergence of the carbide compounds W2C·Mo2C and WC was identified. Several phases with different content of alloying elements were present in the microstructure images. Cr content in the examined areas changed in the range of 0.64–33.86 % by weight; W content reached 41.58 % by weight; Mo –19.53 % by weight; V – 18.55 % by weight; Co – 3.95 % by weight. The carbon content was in the range of 0.28–2.43 % by weight. Analysis of the study results reveals that the most favorable ratio of O:C in the charge was 1.42. At the same time, the phase composition was dominated by a solid solution of the alloying elements and carbon in α-Fe. The share of the residual carbon concentrated in the carbide component was in the range of 0.52–2.11 % by weight, thereby ensuring the required reduction capability of the alloy when used. The study reported here has made it possible to identify new technological aspects of obtaining an alloy by utilizing anthropogenic waste, and whose indicators provide for the possibility of replacing part of standard ferroalloys when smelting steels without strict restrictions on carbon content.
References
- Henckens, M. L. C. M., van Ierland, E. C., Driessen, P. P. J., Worrell, E. (2016). Mineral resources: Geological scarcity, market price trends, and future generations. Resources Policy, 49, 102–111. doi: https://doi.org/10.1016/j.resourpol.2016.04.012
- Sekiguchi, N. (2017). Trade specialisation patterns in major steelmaking economies: the role of advanced economies and the implications for rapid growth in emerging market and developing economies in the global steel market. Mineral Economics, 30 (3), 207–227. doi: https://doi.org/10.1007/s13563-017-0110-2
- Mechachti, S, Benchiheub, O., Serrai, S., Shalabi, M. (2013). Preparation of iron Powders by Reduction of Rolling Mill Scale. International Journal of Scientific & Engineering Research, 4 (5), 1467–1472.
- Grigor’ev, S. M., Petrishchev, A. S. (2012). Assessing the phase and structural features of the scale on P6M5Φ3 and P12M3K5Φ2 steel. Steel in Translation, 42 (3), 272–275. doi: https://doi.org/10.3103/s0967091212030059
- Petryshchev, A., Milko, D., Borysov, V., Tsymbal, B., Hevko, I., Borysova, S., Semenchuk, A. (2019). Studying the physicalchemical transformations at resourcesaving reduction melting of chrome–nickelcontaining metallurgical waste. Eastern-European Journal of Enterprise Technologies, 2 (12 (98)), 59–64. doi: https://doi.org/10.15587/1729-4061.2019.160755
- Borysov, V., Lytvynov, A., Braginets, N., Petryshchev, A., Artemev, S., Tsymbal, B. et. al. (2020). Features of the phase and structural transformations in the processing of industrial waste from the production of highalloyed steels. Eastern-European Journal of Enterprise Technologies, 3 (10 (105)), 48–54. doi: https://doi.org/10.15587/1729-4061.2020.205779
- Hryhoriev, S., Petryshchev, A., Shyshkanova, G., Zaytseva, T., Frydman, O., Sergienko, O. et. al. (2017). Research into recycling of nickelcobaltcontaining metallurgical wastes by the ecologicallysafe technique of hydrogen reduction. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 45–50. doi: https://doi.org/10.15587/1729-4061.2017.114348
- Simonov, V. K., Grishin, A. M. (2013). Thermodynamic analysis and the mechanism of the solid-phase reduction of Cr2O3 with carbon: Part 1. Russian Metallurgy (Metally), 2013 (6), 425–429. doi: https://doi.org/10.1134/s0036029513060153
- Zhao, L., Wang, L., Chen, D., Zhao, H., Liu, Y., Qi, T. (2015). Behaviors of vanadium and chromium in coal-based direct reduction of high-chromium vanadium-bearing titanomagnetite concentrates followed by magnetic separation. Transactions of Nonferrous Metals Society of China, 25 (4), 1325–1333. doi: https://doi.org/10.1016/s1003-6326(15)63731-1
- Zhu, H., Li, Z., Yang, H., Luo, L. (2013). Carbothermic Reduction of MoO3 for Direct Alloying Process. Journal of Iron and Steel Research International, 20 (10), 51–56. doi: https://doi.org/10.1016/s1006-706x(13)60176-4
- Baghdasaryan, A. M., Niazyan, O. M., Khachatryan, H. L., Kharatyan, S. L. (2014). DTA/TG study of tungsten oxide and ammonium tungstate reduction by (Mg+C) combined reducers at non-isothermal conditions. International Journal of Refractory Metals and Hard Materials, 43, 216–221. doi: https://doi.org/10.1016/j.ijrmhm.2013.12.003
- Islam, M., Martinez-Duarte, R. (2017). A sustainable approach for tungsten carbide synthesis using renewable biopolymers. Ceramics International, 43 (13), 10546–10553. doi: https://doi.org/10.1016/j.ceramint.2017.05.118
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Viacheslav Borysov, Tetiana Solomko, Mykhail Yamshinskij, Ivan Lukianenko, Bohdan Tsymbal, Andrey Andreev, Viacheslav Bratishko, Tamara Bilko, Victor Rebenko, Tetiana Chorna
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.