Determination of the effect of carbon nanotubes on the microstructure and functional properties of polycarbonate-based polymer nanocomposite materials

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.239114

Keywords:

polymer nanocomposites, carbon nanotubes, thermal conductivity, electrical conductivity, tensile strength, polycarbonate

Abstract

Polymer nanocomposites are widely used in various high-tech industries. Due to the combination of the elasticity of the matrix and the strength of the inorganic filler, they have improved functional characteristics compared to unfilled polymers. The article is devoted to determining the effect of carbon nanotubes (CNT) on the microstructure and properties of polymeric nanocomposite materials for 3D printing based on polycarbonate. As a result of this work, a series of composite materials was manufactured using a piston extruder. Their microstructure and functional characteristics were investigated using methods of optical microscopy, thermophysical, electrical and mechanical analysis. It was found that CNTs form clusters in the polymer matrix, which form a percolation network at a content of 0.5–0.8 %. This feature of the structure formation of CNTs provided an abrupt increase in the functional characteristics of the materials obtained. It is shown that with an increase in the filler content in the system to 3 %, the thermal conductivity rapidly increases to 1.22 W/(m∙K). A similar effect is observed for the electrical conductivity, which increases by seven orders of magnitude from 10-12 to 10-5 S/cm at 3 % CNT content in the system, exhibiting percolation behavior. With the introduction of CNTs, the crystallinity degree of the polymer matrix decreases by almost 15 %, due to the fact that the developed surface of the nanotubes creates steric hindrances for polycarbonate macromolecules. This effect almost negates the reinforcing effect of nanotubes; therefore, the mechanical tensile strength with the introduction of 3 % CNTs increases by only 21 % compared to the unfilled matrix. In terms of their functional characteristics, the obtained materials are promising for the creation of filaments for 3D printing on their basis.

Author Biographies

Eduard Lysenkov, Information Systems Petro Mohyla Black Sea National University

Doctor of Physical and Mathematical Sciences, Associate Professor

Department of Intelligent Information Systems

Leonid Klymenko, Petro Mohyla Black Sea National University

Doctor of Technical Sciences, Professor, Rector

Department of Ecology

References

Muhammed Shameem, M., Sasikanth, S. M., Annamalai, R., Ganapathi Raman, R. (2021). A brief review on polymer nanocomposites and its applications. Materials Today: Proceedings, 45, 2536–2539. doi: https://doi.org/10.1016/j.matpr.2020.11.254

Gomez-Gras, G., Jerez-Mesa, R., Travieso-Rodriguez, J. A., Lluma-Fuentes, J. (2018). Fatigue performance of fused filament fabrication PLA specimens. Materials & Design, 140, 278–285. doi: https://doi.org/10.1016/j.matdes.2017.11.072

Kaur, G., Singari, R. M., Kumar, H. (2021). A review of fused filament fabrication (FFF): Process parameters and their impact on the tribological behavior of polymers (ABS). Materials Today: Proceedings. doi: https://doi.org/10.1016/j.matpr.2021.06.274

Fang, L., Yan, Y., Agarwal, O., Seppala, J. E., Hemker, K. J., Kang, S. H. (2020). Processing-structure-property relationships of bisphenol-A-polycarbonate samples prepared by fused filament fabrication. Additive Manufacturing, 35, 101285. doi: https://doi.org/10.1016/j.addma.2020.101285

Zhang, X., Fan, W., Liu, T. (2020). Fused deposition modeling 3D printing of polyamide-based composites and its applications. Composites Communications, 21, 100413. doi: https://doi.org/10.1016/j.coco.2020.100413

Wang, X., Jiang, M., Zhou, Z., Gou, J., Hui, D. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 110, 442–458. doi: https://doi.org/10.1016/j.compositesb.2016.11.034

Kukla, C., Gonzalez-Gutierrez, J., Duretek, I., Schuschnigg, S., Holzer, C. (2017). Effect of Particle Size on the Properties of Highly-Filled Polymers for Fused Filament Fabrication. AIP Conference Proceedings, 1914, 190006. doi: https://doi.org/10.1063/1.5016795

Çanti, E., Aydın, M., Yıldırım, F. (2018). Production and Characterization of Composite Filaments for 3D Printing. Journal of Polytechnic, 21 (2), 397–402. doi: https://doi.org/10.2339/politeknik.389591

Angelopoulos, P. M., Samouhos, M., Taxiarchou, M. (2021). Functional fillers in composite filaments for fused filament fabrication; a review. Materials Today: Proceedings, 37, 4031–4043. doi: https://doi.org/10.1016/j.matpr.2020.07.069

Chen, J., Liu, B., Gao, X., Xu, D. (2018). A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Advances, 8 (49), 28048–28085. doi: https://doi.org/10.1039/c8ra04205e

Lysenkov, E. A., Klepko, V. V. (2016). Analysis of Percolation Behavior of Electrical Conductivity of the Systems Based on Polyethers and Carbon Nanotubes. Journal of Nano- and Electronic Physics, 8 (1), 01017-1–01017-7. doi: https://doi.org/10.21272/jnep.8(1).01017

Mora, A., Verma, P., Kumar, S. (2020). Electrical conductivity of CNT/polymer composites: 3D printing, measurements and modeling. Composites Part B: Engineering, 183, 107600. doi: https://doi.org/10.1016/j.compositesb.2019.107600

Lysenkov, É. A., Klepko, V. V. (2015). Characteristic Features of the Thermophysical Properties of a System Based on Polyethylene Oxide and Carbon Nanotubes. Journal of Engineering Physics and Thermophysics, 88 (4), 1008–1014. doi: https://doi.org/10.1007/s10891-015-1278-3

Tsiakatouras, G., Tsellou, E., Stergiou, C. (2014). Comparative study on nanotubes reinforced with carbon filaments for the 3D printing of mechanical parts. World Transactions on Engineering and Technology Education, 12 (3), 392–396. Available at: http://www.wiete.com.au/journals/WTE%26TE/Pages/Vol.12,%20No.3%20(2014)/11-Tsiakatouras-G.pdf

Melezhik, A. V., Sementsov, Y. I., Yanchenko, V. V. (2005). Synthesis of Fine Carbon Nanotubes on Coprecipitated Metal Oxide Catalysts. Russian Journal of Applied Chemistry, 78 (6), 917–923. doi: https://doi.org/10.1007/s11167-005-0420-y

Lysenkov, E., Klymenko, L. (2021). Determining the effect of dispersed aluminum particles on the functional properties of polymeric composites based on polyvinylidene fluoride. Eastern-European Journal of Enterprise Technologies, 3 (12 (111)), 59–66. doi: https://doi.org/10.15587/1729-4061.2021.228731

Hoshen, J., Kopelman, R. (1976). Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm. Physical Review B, 14 (8), 3438–3445. doi: https://doi.org/10.1103/physrevb.14.3438

Feder, J. (1988). Fractals. Springer, 284. doi: https://doi.org/10.1007/978-1-4899-2124-6

Bauhofer, W., Kovacs, J. Z. (2009). A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 69 (10), 1486–1498. doi: https://doi.org/10.1016/j.compscitech.2008.06.018

Kirkpatrick, S. (1973). Percolation and Conduction. Reviews of Modern Physics, 45 (4), 574–588. doi: https://doi.org/10.1103/revmodphys.45.574

Larosa, C., Patra, N., Salerno, M., Mikac, L., Merijs Meri, R., Ivanda, M. (2017). Preparation and characterization of polycarbonate/multiwalled carbon nanotube nanocomposites. Beilstein Journal of Nanotechnology, 8, 2026–2031. doi: https://doi.org/10.3762/bjnano.8.203

Kong, Y., Hay, J. N. (2003). The enthalpy of fusion and degree of crystallinity of polymers as measured by DSC. European Polymer Journal, 39 (8), 1721–1727. doi: https://doi.org/10.1016/s0014-3057(03)00054-5

Grebowicz, J. S. (1996). Thermal properties of polycarbonate grade bisphenol A. Journal of Thermal Analysis, 46 (3-4), 1151–1166. doi: https://doi.org/10.1007/bf01983626

Kumanek, B., Janas, D. (2019). Thermal conductivity of carbon nanotube networks: a review. Journal of Materials Science, 54 (10), 7397–7427. doi: https://doi.org/10.1007/s10853-019-03368-0

Lysenkov, Е. А., Dinzhos, R. V. (2019). Theoretical Analysis of Thermal Conductivity of Polymer Systems Filled with Carbon Nanotubes. Journal of Nano- and Electronic Physics, 11 (4), 04004-1–04004-6. doi: https://doi.org/10.21272/jnep.11(4).04004

Lysenkov, E. A., Klepko, V. V., Yakovlev, Yu. V. (2015). Influence of the Filler’s Size on the Percolation Behavior in the Polyethylene Glycol/Carbon Nanotubes System. Journal of Nano- and Electronic Physics, 7 (1), 01031. Available at: https://jnep.sumdu.edu.ua/en/full_article/1447

Stauffer, D., Aharony, A. (1994). Introduction to percolation theory. Taylor & Francis, 192. doi: https://doi.org/10.1201/9781315274386

Zhi, X., Zhang, H.-B., Liao, Y.-F., Hu, Q.-H., Gui, C.-X., Yu, Z.-Z. (2015). Electrically conductive polycarbonate/carbon nanotube composites toughened with micron-scale voids. Carbon, 82, 195–204. doi: https://doi.org/10.1016/j.carbon.2014.10.062

Klepko, V. V., Lysenkov, E. A. (2015). Features of Percolation Transition in Systems on the Basis of Oligoglycols and Carbon Nanotubes. Ukrainian Journal of Physics, 60 (9), 944–949. doi: https://doi.org/10.15407/ujpe60.09.0944

Han, Z., Fina, A. (2011). Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in Polymer Science, 36 (7), 914–944. doi: https://doi.org/10.1016/j.progpolymsci.2010.11.004

Published

2021-08-26

How to Cite

Lysenkov, E., & Klymenko, L. (2021). Determination of the effect of carbon nanotubes on the microstructure and functional properties of polycarbonate-based polymer nanocomposite materials . Eastern-European Journal of Enterprise Technologies, 4(12(112), 53–60. https://doi.org/10.15587/1729-4061.2021.239114

Issue

Section

Materials Science