Design of solid oxide structure on the composite cathode for IT-SOFC

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.239162

Keywords:

solid oxide fuel cells, cobalt-free cathode composite, perovskite structure, oxygen content, conductivity

Abstract

Solid oxide structure of the cobalt-free composite has been exploited as a new cathode material for IT-SOFCs. The composite model system was synthesized using the metallic oxide material, which was formed by a solid-state reaction technique. The generation of the Sm0.5Sr0.25Ba0.25FeO3-δ (SSBF) model system was carried out during the sintering process. The weight loss and oxygen content were investigated by thermal gravimetric analysis (TG). Meanwhile, X-ray diffraction characterized the structure of the composite and thermal conductivity tested the conductivity properties. The results showed that the structure of the SSBF composite demonstrated the perovskite single phase leading to the structural design. The decomposition and evaporation of the constituent elements of the composite corresponded to weight losses during the constructing process. The oxygen content of the model system was 2.98 after the calcination process. The electrical conductivity value reached 2 S cm-1 at 400 °C and increases to a maximum of 7.5 S cm-1 at 710 °C. The metallic element played to generating the conductive behavior at the low temperature, while the ionic structure acted as elevated temperature. So, mixed ionic and electric conductors (MIEC) were employed comprehensively for creating the conductive properties. Based on the structure and conductivity results, the SSBF composite has a good chance as an alternative cathode material with a perovskite single phase for future TI-SOFCs applications

Author Biographies

Dianta Mustofa Kamal, Politeknik Negeri Jakarta

Doctor of Energy Conversion, Assistance Professor

Department of Mechanical Engineering

Iwan Susanto, Politeknik Negeri Jakarta

Doctor of Materials Science and Engineering, Assistance Professor

Department of Mechanical Engineering

Rahmat Subarkah, Politeknik Negeri Jakarta

Master of Thermo Fluids Engineering, Assistance Professor

Department of Mechanical Engineering

Fuad Zainuri, Politeknik Negeri Jakarta

Doctoral Candidate of Mechanical Engineering, Assistance Professor

Department of Mechanical Engineering

Belyamin, Politeknik Negeri Jakarta

Doctor of Energy Conversion, Assistance Professor

Department of Mechanical Engineering

Tia Rahmiati, Politeknik Negeri Jakarta

Master of Engineering in Metallurgy and Materials, Assistance Professor

Department of Mechanical Engineering

Sulaksana Permana, Universitas Indonesia

Doctor of Engineering in Metallurgy and Materials, Assistance Professor

Centre of Mineral Processing and Corrosion Research

Department of Metallurgy and Materials

Adi Subardi, Institut Teknologi Nasional Yogyakarta

Doctor of Materials Science and Engineering, Assistance Professor

Department of Mechanical Engineering

Yen-Pei Fu, National Dong Hwa University

Doctor of Materials, Professor

Department of Materials Science and Engineering

References

  1. Tan, L., Dong, X., Gong, Z., Wang, M. (2018). Analysis on energy ef fi ciency and CO2 emission reduction of an SOFC- based energy system served public buildings with large interior zones. Energy, 165, 1106–1118. doi: http://doi.org/10.1016/j.energy.2018.10.054
  2. Naimaster, E. J., Sleiti, A. K. (2013). Potential of SOFC CHP systems for energy-efficient commercial buildings. Energy and Buildings, 61, 153–160. doi: http://doi.org/10.1016/j.enbuild.2012.09.045
  3. Bompard, E., Napoli, R., Wan, B., Orsello, G. (2008). Economics evaluation of a 5kW SOFC power system for residential use. International Journal of Hydrogen Energy, 33 (12), 3243–3247. doi: http://doi.org/10.1016/j.ijhydene.2008.04.017
  4. Fernandes, A., Woudstra, T., van Wijk, A., Verhoef, L., Aravind, P. V. (2016). Fuel cell electric vehicle as a power plant and SOFC as a natural gas reformer: An exergy analysis of different system designs. Applied Energy, 173, 13–28. doi: http://doi.org/10.1016/j.apenergy.2016.03.107
  5. Ramadhani, F., Hussain, M. A., Mokhlis, H., Hajimolana, S. (2017). Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey. Renewable and Sustainable Energy Reviews, 76, 460–484. doi: http://doi.org/10.1016/j.rser.2017.03.052
  6. Jiang, S., Sunarso, J., Zhou, W., Shen, J., Ran, R., Shao, Z. (2015). Cobalt-free SrNbxFe1-xO3-δ (x = 0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 298, 209–216. doi: http://doi.org/10.1016/j.jpowsour.2015.08.063
  7. Li, C.-H., Hu, S.-H., Tay, K.-W., Fu, Y.-P. (2012). Electrochemical characterization of gradient Sm0.5Sr0.5CoO3-δ cathodes on Ce0.8Sm0.2O1.9 electrolytes for solid oxide fuel cells. Ceramics International, 38 (2), 1557–1562. doi: http://doi.org/10.1016/j.ceramint.2011.09.041
  8. Wang, S., Feng, Y., Wang, D. (2014). Electrochemical comparison of cobalt-free La0.5Sr0.5Fe0.9Mo0.1O3-δ based cathode materials for intermediate-temperature solid oxide fuel cells. Ceramics International, 40 (4), 6359–6363. doi: http://doi.org/10.1016/j.ceramint.2013.10.133
  9. Subardi, A., Chen, C.-C., Cheng, M.-H., Chang, W.-K., Fu, Y.-P. (2016). Electrical, thermal and electrochemical properties of SmBa1-xSrxCo2O5+δ cathode materials for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 204, 118–127. doi: http://doi.org/10.1016/j.electacta.2016.04.069
  10. Baharuddin, N. A., Muchtar, A., Somalu, M. R. (2017). Short review on cobalt-free cathodes for solid oxide fuel cells. International Journal of Hydrogen Energy, 42 (14), 9149–9155. doi: http://doi.org/10.1016/j.ijhydene.2016.04.097
  11. Ling, Y., Zhao, L., Lin, B., Dong, Y., Zhang, X., Meng, G., Liu, X. (2010). Investigation of cobalt-free cathode material Sm0.5Sr0.5Fe0.8Cu0.2O3-δ for intermediate temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 35 (13), 6905–6910. doi: http://doi.org/10.1016/j.ijhydene.2010.04.021
  12. Liu, H., Zhu, K., Liu, Y., Li, W., Cai, L., Zhu, X. et. al. (2018). Structure and electrochemical properties of cobalt-free perovskite cathode materials for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 279, 224–230. doi: http://doi.org/10.1016/j.electacta.2018.05.086
  13. Zhao, L., He, B., Zhang, X., Peng, R., Meng, G., Liu, X. (2010). Electrochemical performance of novel cobalt-free oxide Ba0.5Sr0.5Fe0.8Cu0.2O3-δ for solid oxide fuel cell cathode. Journal of Power Sources, 195 (7), 1859–1861. doi: http://doi.org/10.1016/j.jpowsour.2009.09.078
  14. Pang, S., Wang, W., Chen, T., Shen, X., Wang, Y., Xu, K., Xi, X. (2016). Systematic evaluation of cobalt-free Ln0.5Sr0.5Fe0.8Cu0.2O3−δ (Ln = La, Pr, and Nd) as cathode materials for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 326, 176–181. doi: http://doi.org/10.1016/j.jpowsour.2016.06.134
  15. Ding, X., Gao, X., Zhu, W., Wang, J., Jiang, J. (2014). Electrode redox properties of Ba1-xLaxFeO3-δ as cobalt free cathode materials for intermediate- temperature SOFCs. International Journal of Hydrogen Energy, 39 (23), 12092–12100. doi: http://doi.org/10.1016/j.ijhydene.2014.06.009
  16. Meng, X., Lü, S., Yu, W. W., Ji, Y., Sui, Y., Wei, M. (2018). Layered perovskite LnBa0.5Sr0.5Cu2O5+ δ (Ln = Pr and Nd) as cobalt-free cathode materials for solid oxide fuel cells. International Journal of Hydrogen Energy, 43 (9), 4458–4470. doi: http://doi.org/10.1016/j.ijhydene.2018.01.033
  17. Ling, Y., Zhang, X., Wang, Z., Wang, S., Zhao, L., Liu, X., Lin, B. (2013). Potentiality of cobalt-free perovskite Ba0.5Sr 0.5Fe0.9Mo0.1O3-δ as a single-phase cathode for intermediate-to-low-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 38 (33), 14323–14328. doi: http://doi.org/10.1016/j.ijhydene.2013.08.089
  18. Chen, D., Chen, C., Dong, F., Shao, Z., Ciucci, F. (2014). Cobalt-free polycrystalline Ba0.95La0.05FeO3-δ thin films as cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 250, 188–195. doi: http://doi.org/10.1016/j.jpowsour.2013.11.010
  19. Fu, Y. P. (2010). Sm0.5Sr0.5Co0.4Ni0.6O3-δ-Sm0.2Ce0.8O1.9 as a potential cathode for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 35 (16), 8663–8669. doi: http://doi.org/10.1016/j.ijhydene.2010.05.109
  20. Ding, X., Kong, X., Wu, H., Zhu, Y., Tang, J., and Zhong, Y. (2012). SmBa0.5Sr0.5Cu2O5+δ and SmBa0.5Sr0.5CuFeO5+δ layered perovskite oxides as cathodes for IT-SOFCs. International Journal of Hydrogen Energy, 37 (3), 2546–2551. doi: http://doi.org/10.1016/j.ijhydene.2011.10.080
  21. Subardi, A., Chen, C. C., Cheng, M. H., Chang, W. K., Fu, Y. P. (2016). Electrical, thermal and electrochemical properties of SmBa1-xSrxCo2O5+δ cathode materials for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 204, 118–127. doi: http://doi.org/10.1016/j.electacta.2016.04.069
  22. Subardi, A., Liao, K. Y, Fu, Y. P. (2019). Oxygen transport, thermal and electrochemical properties of NdBa0.5Sr0.5Co2O5+δ cathode for SOFCs, J. Eur. Ceram. Soc., 39(1), 30–40. doi: 10.1016/j.jeurceramsoc.2018.01.022
  23. Subardi, A., Susanto, I., Kartikasari, R., Tugino, T., Kuntara, H., Wijaya, A. E. et. al. (2021). An analysis of SmBa0.5Sr0.5CO2O5+δ double perovskite oxide for intermediate–temperature solid oxide fuel cells,” Eastern-European Journal of Enterprise Technologies, 2 (12 (110)), 6–14. doi: http://doi.org/10.15587/1729-4061.2021.226342
  24. Susanto, I., Kamal, D. M., Ruswanto, S., Subarkah, R., Zainuri, F., Permana, S. et. al. (2020). Development of cobalt-free oxide (Sm0.5Sr0.5Fe0.8Cr0.2O3-δ) cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Eastern-European Journal of Enterprise Technologies, 6 (5 (108)), 15–20. doi: http://doi.org/10.15587/1729-4061.2020.217282

Downloads

Published

2021-08-31

How to Cite

Kamal, D. M., Susanto, I., Subarkah, R., Zainuri, F. ., Belyamin, Rahmiati, T., Permana, S., Subardi, A., & Fu, Y.-P. (2021). Design of solid oxide structure on the composite cathode for IT-SOFC . Eastern-European Journal of Enterprise Technologies, 4(5(112), 6–11. https://doi.org/10.15587/1729-4061.2021.239162

Issue

Section

Applied physics