Building a mathematical model of technological processes in the acetic acid synthesis reactor

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.242816

Keywords:

static mathematical model of acetic acid synthesis reactor, automatic control, technological processes

Abstract

The result of the study reported in this paper is the proposed mathematical model of technological processes occurring in the reactor for acetic acid synthesis. The initial parameters of the reactor considered were the value of the concentration of acetic acid at the reactor outlet, temperature, the level of reaction mass, and pressure in the reactor. The input parameters included the amount of methanol and carbon monoxide supplied. Material and thermal balances of reactor technological processes were used to construct the mathematical model of the reactor. Fisher criterion was applied to test the mathematical model for adequacy. At the specified 5 % level of significance, the value of Fisher criterion for the concentration of acetic acid, temperature, and the level of reaction mass in the reactor does not exceed its critical value for a stationary mode. The reproducibility of the modeling results was tested using the Cochran criterion. The value of the Cochrane criterion, at the predefined 5 % level of significance, for the concentration of acetic acid, temperature, and the level of reaction mass in the reactor does not exceed its critical value for different modes. The relative error for the modeled output parameters was calculated. The relative error of the initial parameters did not exceed the level of 10 %. The model built makes it possible to calculate with satisfactory accuracy the value of the concentration of acetic acid at the reactor output, the temperature and level of the reaction mass in the reactor under a stationary mode. The resulting model could be used to automate the control of technological processes in the acetic acid synthesis reactor under a stationary mode. The study results open additional opportunities to manage the stationary mode of the reactor

Author Biography

Zhanna Samojlova, Volodymyr Dahl East Ukrainian National University

PhD, Associate Professor

Department of Electronic Devices

References

  1. Pat. No. US 7683212B2 USA (2010). Methods for producing acetic acid. Date of Patent: 23.03.2010.
  2. Pat. No. US 6642413B2 USA (2003). Process for monitoring a continuousacetic acid and/or methylacetate production. Date of Patent: 04.11.2003.
  3. Pat. No. US 7005541B2 USA (2006). Low water methanol carbonylation process for high acetic acid production and for water balance control. Date of Patent: 28.02.2006.
  4. Ivanova, E. A., Nasluzov, V. A., Rubalo, A. I., Rosch, N. (2003). Theoretical Investigation of the Mechanism of Methanol Carbonylation Catalyzed by Dicarbonyldiiodorhodium Complex. Chemistry for Sustainable Development, 11, 101–107.
  5. Jones, J. H. (2000). The CativaTM Process for the Manufacture: Plant of Acetic Acid Location Year Debottlenecking or increased throughput achieved. Iridium catalyst improves productivity in an established industrial process. Platinum Metals Review, 44 (3), 94–105.
  6. Golhosseini Bidgoli, R., Naderifar, A. (2012). Kinetic Study, Modeling and Simulation of Homogeneous Rhodium-Catalyzed Methanol Carbonylation to Acetic Acid. Iranian journal of chemistry & chemical engineering-international, 31 (1), 57–73.
  7. Roth, J. F. (1975). The Production of Acetic Acid: Rhodium catalysed carbonylation of methanol. Platinum Metals Review, 19 (1), 12–14
  8. Mandake, M. B., Anekarb, S. V., Walkec, S. M. (2013). Kinetic Study of Catalyzed and Uncatalyzed Esterification Reaction of Acetic acid with Methanol. American International Journal of Research in Formal, Applied & Natural Sciences, 3 (1), 114–121.
  9. Porkuian, O. V., Samoilova, Zh. H. (2012). Ydentyfykatsyia obъektov upravlenyia na osnove parallelnikh y parallelno-rekursyvnikh modelei Hammershteina prymenytelno k apparatam YTN proyzvodstva ammyachnoi selytri. Visnyk Skhidnoukrainskoho natsionalnoho universytetu im. V. Dalia, 17 (188 (1)), 118–123.
  10. Abdalkhamid, D., Loriia, M. G., Tselischev, A. B., Eliseev, P. I. (2012). Sistema ekstremalnogo upravleniia mnogopolochnym reaktorom s modeliu. Vіsnik SNU, 15 (186 (2)), 152–156.
  11. Shahamiri, S. A., Wierzba, I. (2011). Modeling the reactive processes within a catalytic porous medium. Applied Mathematical Modelling, 35 (4), 1915–1925. doi: http://doi.org/10.1016/j.apm.2010.10.020
  12. Elizalde, I., Ancheyta, J. (2015). Dynamic modeling and simulation of a naphtha catalytic reforming reactor. Applied Mathematical Modelling, 39 (2), 764–775. doi: http://doi.org/10.1016/j.apm.2014.07.013
  13. Mansour, M., Ellis, J. E. (2008). Methodology of on-line optimisation applied to a chemical reactor. Applied Mathematical Modelling, 32 (2), 170–184. doi: http://doi.org/10.1016/j.apm.2006.11.014
  14. Orazbayev, B., Orazbayeva, K., Makhatova, V., Tuleuova, R., Kulmagambetova, Z., Toleuov, T. et. al. (2021). Methods of constructing models and optimizing the operating modes of a chemical engineering system for the production of benzene in a fuzzy environment. Eastern-European Journal of Enterprise Technologies, 2 (2 (110)), 78–88. doi: http://doi.org/10.15587/1729-4061.2021.226167
  15. Seraya, O. V., Dоmin, D. A. Linear regression analysis of a small sample of fuzzy input data (2012) Journal of Automation and Information Sciences, 44 (7), pp. 34-48.
  16. Anoprienko, A. Ia., Kinle, A., Sviatnii, S. N., Osipova, T. F. (1997). Modelling of Acetic Acid Reactor for Simulation on the Base of DIVA Environment. Sbornik nauchnykh trudov DonGTU. Seriia «Informatika, kibernetika i vychislitelnaia tekhnika», 1, 16–21.
  17. Samoilova, Zh. H., Asmankyna, A. A. (2015). Pobudova matematychnoi modeli reaktoru syntezu otstovoi kysloty. TEKhNOLOHIIa-2015, 32–33.
  18. Samoilova, Zh. H. (2014). Development of an commissioning experimental – statistical model for the reactor acetic acid syntesis during the period. Visnyk Skhidnoukrainskoho natsionalnoho universytetu im. V. Dalia, 10 (217), 115–122.
  19. Porkujan, O., Samojlova, Zh. (2013). Neural network simulation in running of acetic acid syntesis unit while start-up. TEKA. Academy of Sciences (PAN). Warsaw, 188–192.
  20. Postoiannii tekhnologicheskii reglament №129 tsekha proizvodstva uksusnoi kisloty iz metanola i oksida ugleroda. Tekhnologicheskaia chast. Vol. 1 (2005). Severodonetsk: Izd-vo CHAO «Severodonetskoe obedinenie AZOT», 202.
  21. Gutnik, S. P., Sosonko, V. E., Gutman, V. D. (1988). Raschety po tekhnologii organicheskogo sinteza. Moscow: «Khimiia», 272.
  22. Stentsel, Y. I. (1993). Matematychne modeliuvannia tekhnolohichnykh obiektiv keruvannia. Kyiv: ISDO, 328.
  23. Stentsel, Y. I., Porkuian, O. V. (2014). Kompiuterno-intehrovani systemy kontroliu ta upravlinnia vyrobnytstvamy azotnoho kompleksu. Chastyna 1. Vyrobnytstva konversii pryrodnoho hazu. Luhansk: Vyd-vo Skhidnoukr. nats. univ. im. V. Dalia, 376.

Downloads

Published

2021-10-31

How to Cite

Samojlova, Z. (2021). Building a mathematical model of technological processes in the acetic acid synthesis reactor. Eastern-European Journal of Enterprise Technologies, 5(2 (113), 94–104. https://doi.org/10.15587/1729-4061.2021.242816