Development a method for determining the coordinates of air objects by radars with the additional use of multilateration technology

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.242935

Keywords:

radar, multilateration technology, air object, definition method, root mean square error

Abstract

This paper reports an experimental study aimed at confirming disruptions in the operation of ADS-B receivers. The experimental investigation into disruptions in the operation of ADS-B receivers involved the FlightAware Piaware receiver. Examples of the disrupted performance of ADS-B receivers are given. It was found that the experimentally detected disruptions in the operation of ADS-B receivers could lead to a decrease in the accuracy of determining the coordinates of air objects with the joint use of the radar and multilateration technology.

A method for determining the coordinates of an air object by radar with additional use of multilateration technology has been devised. The method involves the following stages: entering initial data, the calculation of distances between the points of reception and the air object, the computation of the inconsistency vector, the calculation of the matrix of partial derivatives taking into consideration the estimates of the coordinates of an air object at the previous iteration, the computation of the correction, the calculation of the refined coordinates of the air object. Unlike those known ones, the improved method for determining the coordinates of an air object by a radar additionally uses multilateration technology.

The accuracy of determining the air objects' coordinates by a radar with the additional use of multilateration technology was estimated. It was established that the additional application of multilateration technology would reduce the error in determining the coordinates of an air object by 1.58 to 2.39 times on average, compared to using only an autonomous radar

Author Biographies

Hennadii Khudov, Ivan Kozhedub Kharkiv National Air Force University

Doctor of Technical Sciences, Professor, Head of Department

Department of Radar Troops Tactic

Petro Mynko, National University of Radio Electronics

PhD, Associate Professor

Department of Higher Mathematics

Shamil Ikhsanov, Admiral Makarov National University of Shipbuilding

PhD, Associate Professor

Department of Programmable Electronics, Electrical Engineering and Telecommunications

Oleksii Diakonov, Admiral Makarov National University of Shipbuilding

PhD, Associate Professor

Department of Programmable Electronics, Electrical Engineering and Telecommunications

Oleksandr Kovalenko, Central Ukrainian National Technical University

Doctor of Technical Sciences, Associate Professor

Department of Cybersecurity and Software

Yuriy Solomonenko, Ivan Kozhedub Kharkiv National Air Force University

PhD, Deputy Head of Faculty of the Academic and Scientific Work

Faculty of Radar-Technical Troops of Anti-Aircraft

Yevhen Drob, Ivan Kozhedub Kharkiv National Air Force University

PhD, Head of Research Laboratory

Faculty of Automated Control Systems and Ground Support for Aviation Flights

Oleh Kharun, National Academy of the State Border Guard Service of Ukraine named after B. Khmelnitsky

Senior Lecturer

Department of Engineering Support and Technical Means of Border Protection

Serhii Сherkashyn, National Academy of the National Guard of Ukraine

PhD, Senior Lecturer

Department of Tactical and Special Training

Oleksii Serdiuk, Ivan Kozhedub Kharkiv National Air Force University

Senior Lecturer

Department of Radar Troops Tactic

References

  1. Melvin, W. L., Scheer, J. A. (Eds.) (2013). Principles of modern radar. Vol. II. Advanced techniques. Raleigh: SciTech Publishing, 846.
  2. Melvin, W. L., Scheer, J. A. (Eds.) (2013). Principles of modern radar. Vol. III. Radar applications. IET, 820. doi: https://doi.org/10.1049/sbra503e
  3. Van Bezouwen, J., Brandfass, M. (2017). Technology Trends for Future Radar. Microwave Journal. Available at: http://www.microwavejournal.com/articles/29367-technology-trends-for-future-radar
  4. Lishchenko, V., Kalimulin, T., Khizhnyak, I., Khudov, H. (2018). The Method of the organization Coordinated Work for Air Surveillance in MIMO Radar. 2018 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo). doi: https://doi.org/10.1109/ukrmico43733.2018.9047560
  5. Khudov, H. (2020). The Coherent Signals Processing Method in the Multiradar System of the Same Type Two-coordinate Surveillance Radars with Mechanical Azimuthal Rotation. International Journal of Emerging Trends in Engineering Research, 8 (6), 2624–2630. doi: https://doi.org/10.30534/ijeter/2020/66862020
  6. Marpl-ml, S. L. (1990). Cifrovoy spektral'nyy analiz i ego prilozheniya. Moscow: Mir, 584.
  7. Klimov, S. A. (2013). Metod povysheniya razreshayuschey sposobnosti radiolokacionnyh sistem pri cifrovoy obrabotke signalov. Zhurnal radioelektroniki, 1. Available at: http://jre.cplire.ru/jre/jan13/1/text.html
  8. Bhatta, A., Mishra, A. K. (2017). GSM-based commsense system to measure and estimate environmental changes. IEEE Aerospace and Electronic Systems Magazine, 32 (2), 54–67. doi: https://doi.org/10.1109/maes.2017.150272
  9. Neyt, X., Raout, J., Kubica, M., Kubica, V., Roques, S., Acheroy, M., Verly, J. G. (2006). Feasibility of STAP for Passive GSM-Based Radar. 2006 IEEE Conference on Radar. doi: https://doi.org/10.1109/radar.2006.1631853
  10. Willis, N. J. (2004). Bistatic Radar. IET. doi: https://doi.org/10.1049/sbra003e
  11. Khudov, H., Zvonko, A., Kovalevskyi, S., Lishchenko, V., Zots, F. (2018). Method for the detection of small­sized air objects by observational radars. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 61–68. doi: https://doi.org/10.15587/1729-4061.2018.126509
  12. Ruban, I., Khudov, H., Lishchenko, V., Pukhovyi, O., Popov, S., Kolos, R. et. al. (2020). Assessing the detection zones of radar stations with the additional use of radiation from external sources. Eastern-European Journal of Enterprise Technologies, 6 (9 (108)), 6–17. doi: https://doi.org/10.15587/1729-4061.2020.216118
  13. Leshchenko, S. P., Kolesnyk, O. M., Hrytsaienko, S. A., Burkovskyi, S. I. (2017). Use of the ADS-B information in order to improve quality of the air space radar reconnaissance. Science and Technology of the Air Force of Ukraine, 3 (28), 69–75. doi: https://doi.org/10.30748/nitps.2017.28.09
  14. Khudov, H., Diakonov, O., Kuchuk, N., Maliuha, V., Furmanov, K., Mylashenko, I. et. al. (2021). Method for determining coordinates of airborne objects by radars with additional use of ADS-B receivers. Eastern-European Journal of Enterprise Technologies, 4 (9 (112)), 54–64. doi: https://doi.org/10.15587/1729-4061.2021.238407
  15. LORAN-C. Available at: https://www.skybrary.aero/index.php/LORAN-C
  16. Multilateration (MLAT) Concept of Use. Edition 1.0. Available at: https://www.icao.int/APAC/Documents/edocs/mlat_concept.pdf
  17. Neven, W. H. L., Quilter, T. J., Weedon, R., Hogendoorn, R. A. (2004). Wide Area Multilateration Wide Area Multilateration Report on EATMP TRS 131/04 Version 1.1. ational Aerospace Laboratory NLR. Available at: https://www.eurocontrol.int/sites/default/files/2019-05/surveilllance-report-wide-area-multilateration-200508.pdf
  18. Mantilla-Gaviria, I. A., Leonardi, M., Balbastre-Tejedor, J. V., de los Reyes, E. (2013). On the application of singular value decomposition and Tikhonov regularization to ill-posed problems in hyperbolic passive location. Mathematical and Computer Modelling, 57 (7-8), 1999–2008. doi: https://doi.org/10.1016/j.mcm.2012.03.004
  19. Schau, H., Robinson, A. (1987). Passive source localization employing intersecting spherical surfaces from time-of-arrival differences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35 (8), 1223–1225. doi: https://doi.org/10.1109/tassp.1987.1165266
  20. Leonardi, M., Mathias, A., Galati, G. (2009). Two efficient localization algorithms for multilateration. International Journal of Microwave and Wireless Technologies, 1 (3), 223–229. doi: https://doi.org/10.1017/s1759078709000245
  21. Yeromina, N., Kravchenko, I., Kobzev, I., Volk, M., Borysenko, V., Lukyanova, V. et. al. (2021). The Definition of the Paramethers of Superconducting Film for Production of Protection Equipment Against Electromagnetic Environmental Effects. International Journal of Emerging Technology and Advanced Engineering, 11 (7), 38–47. doi: https://doi.org/10.46338/ijetae0721_06
  22. Monakov, A. A. (2018). Algoritm ocenki mestopolozheniya ob'ekta v aktivnyh sistemah mul'tilateracii. XXIV Mezhdunar. nauch.-tehn. konf. "Radiolokaciya, navigaciya, svyaz'". Vol. 3. Voronezh, 134–142.
  23. Monakov, A. A. (2018). Modified Bancroft Algorithm for Multilateration Systems. Journal of the Russian Universities. Radioelectronics, 1, 50–55. doi: https://doi.org/10.32603/1993-8985-2018-21-1-50-55
  24. Monakov, A. A. (2018). Localization algorithm for multilateration systems. Journal of the Russian Universities. Radioelectronics, 4, 38–46. doi: https://doi.org/10.32603/1993-8985-2018-21-4-38-46
  25. Skrypnik, O., Shegidevich, A. (2019). Features of working areas of multilateration systems. The Aviation Herald, 1 (1), 10–16. Available at: https://bgaa.by/sites/default/files/inline-files/aviacionnyy-vestnik-zhurnal-no1-19_12.pdf
  26. Schäfer, M., Lenders, V., Martinovic, I. (2013). Experimental Analysis of Attacks on Next Generation Air Traffic Communication. Lecture Notes in Computer Science, 253–271. doi: https://doi.org/10.1007/978-3-642-38980-1_16
  27. Enclosure Kit for USRP B200/B210. Available at: https://www.ettus.com/all-products/USRP-B200-Enclosure/
  28. Nighswander, T., Ledvina, B., Diamond, J., Brumley, R., Brumley, D. (2012). GPS software attacks. Proceedings of the 2012 ACM Conference on Computer and Communications Security - CCS ’12. doi: https://doi.org/10.1145/2382196.2382245
  29. Saybel', A. G. (1958). Osnovy teorii tochnosti radiotehnicheskih metodov mestoopredeleniya. Moscow: Oborongiz, 56.
  30. P-19МА. Available at: https://www.aerotechnica.ua/en/p-19ma-en.html

Downloads

Published

2021-10-31

How to Cite

Khudov, H., Mynko, P., Ikhsanov, S., Diakonov, O., Kovalenko, O. ., Solomonenko, Y., Drob, Y., Kharun, O., Сherkashyn S., & Serdiuk, O. (2021). Development a method for determining the coordinates of air objects by radars with the additional use of multilateration technology. Eastern-European Journal of Enterprise Technologies, 5(9 (113), 6–16. https://doi.org/10.15587/1729-4061.2021.242935

Issue

Section

Information and controlling system