Determining basic characteristics of stabilizer micro torch burners for the combustion of ballasted fuel gases

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.242984

Keywords:

burner device, combustion stability, ballasted fuel gas, torch length, stabilizer, ballasting, fuel gas, combustion characteristics

Abstract

This paper reports an experimental study into the combustion of alternative gases in the form of a mixture of propane-butane with air and carbon dioxide after a stabilizing flat module whose both sides are flown around with an airflow. The ballasted fuel was fed by jets into the airflow from the holes located on the side walls of the stabilizer. In this case, the fuel and air were partially premixed. It was established that when ballasting fuel with inert admixtures, the length of the torch and the maximum temperature gradually decreased while nitrogen oxide emissions decreased. With an increase in the content of ballast in fuel, combustion breaks. The dependence of torch stability on the relative consumption of ballast has been established. To stabilize the combustion, highly reactive fuel is supplied to the recirculation zone after a stabilizer from a separate collector. Ballasted fuel passes through the next torches of high-temperature fuel; the all fuel combustion process takes place. The combined scheme of mixture formation makes it possible to adjust fuel consumption in the zones and thus maintain a stable burner power. In the case of supplying all fuel to the recirculation zone after the stabilizer, a so-called "rich" detachment is possible when the torch is detached from the stabilizer. When working under such modes, highly reactive fuel is supplied from the holes on the side walls of the stabilizer, which are placed closer to its detachment edges than the holes for the supply of ballasted fuel. At the same time, the jets of ballasted fuel also pass between the torches of highly reactive fuel so there is joint combustion of all fuel

Author Biographies

Olga Chernousenko, National Technical University of Ukraine « “Igor Sikorsky Kyiv Polytechnic Institute»

Doctor of Technical Sciences, Professor

Department of Heat Energy

Leonid Butovsky, National Technical University of Ukraine « “Igor Sikorsky Kyiv Polytechnic Institute»

PhD, Associate Professor

Department of Heat Energy

Olena Hranovska, National Technical University of Ukraine « “Igor Sikorsky Kyiv Polytechnic Institute»

PhD, Associate Professor

Department of Heat Energy

Oleh Moroz, National Technical University of Ukraine « “Igor Sikorsky Kyiv Polytechnic Institute»

Postgraduate Student

Department of Heat Energy

Oleksandr Starchenko, National Technical University of Ukraine « “Igor Sikorsky Kyiv Polytechnic Institute»

Postgraduate Student

Department of Heat Energy

References

  1. Klumchuk, O. V., Grokh, N. V. (2012). Production of biogas: experience of foreign countries and prospect of development is in Ukraine. Zb. Naukovykh prats VNAU, 2 (64), 50–54. Available at: http://econjournal.vsau.org/files/pdfa/869.pdf
  2. Kholod, N., Evans, M., Pilcher, R. C., Roshchanka, V., Ruiz, F., Coté, M., Collings, R. (2020). Global methane emissions from coal mining to continue growing even with declining coal production. Journal of Cleaner Production, 256, 120489. doi: http://doi.org/10.1016/j.jclepro.2020.120489
  3. Vladimirov, Ia. A., Zysin, L. V. (2018). Methodological aspects of energy utilization of municipal solid waste and its gasification products. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki, 24 (1), 5–16. Available at: doi: http://doi.org/10.18721/JEST.240101
  4. Liu, C., Yan, B., Chen, G., Bai, X. S. (2010). Structures and burning velocity of biomass derived gas flames. International Journal of Hydrogen Energy, 35 (2), 542–555. doi: http://doi.org/10.1016/j.ijhydene.2009.11.020
  5. Sigal, I. Ia., Marasin, A. V., Smikhula, A. V., Sigal, A. I., Kolchev, V. A. (2013). Experimental study of biogas burning and it use in industrial boilers. International Scientific Journal for Alternative Energy and Ecology, 17 (139), 84–89. Available at: https://cyberleninka.ru/article/n/eksperimentalnoe-issledovanie-goreniya-biogaza-i-ego-ispolzovanie-v-promyshlennyh-kotlah/viewer
  6. Sigal, I. Ia., Smіkhula, A. V., Marasin, A. V., Kuts, V. P., Dombrovskaia, E. P., Kolchev, V. A., Kernazhitskaia, E. S. (2013). Experimental Research of a Biogasas a Fuel for Boilers. Energotekhnologii i resursosberezhenie, 5, 26–32. Available at: http://dspace.nbuv.gov.ua/handle/123456789/127237?show=full
  7. Anggono, W., Wardana, I. N. G., Lawes, M., Hughes, K. J., Wahyudi, S., Hamidi, N., Hayakawa, A. (2013). Biogas Laminar Burning Velocity and Flammability Characteristics in Spark Ignited Premix Combustion. Journal of Physics: Conference Series, 423, 012015. doi: http://doi.org/10.1088/1742-6596/423/1/012015
  8. Hosseini, S. E., Bagheri, G., Khaleghi, M., Abdul Wahid, M. (2015). Combustion of Biogas Released from Palm Oil Mill Effluent and the Effects of Hydrogen Enrichment on the Characteristics of the Biogas Flame. Journal of Combustion, 2015, 1–12. doi: http://doi.org/10.1155/2015/612341
  9. Sigal, I. Ia., Marasin, F. V., Smikhula, A. V. (2014). Gas Burners for Combustion of Biogas in Boilers. Energotekhnologii i resursosberezhenie, 3, 68–72. Available at: http://dspace.nbuv.gov.ua/handle/123456789/127295
  10. Komina, G. P. (2018). Environmental characteristics of combustion of gasesin a closed ring flame. Voda i ekologiia: problemy i resheniia, 1 (73), 39–47.
  11. Koliienko, V. A., Halinska, T. A., Shelimanova, O. V. (2015). Combined burning of mixture of natural and producer gases. Naukovyi visnyk NUBiP Ukrainy, 5, 136–138. Available at: http://nbuv.gov.ua/UJRN/nvnau_tech_2015_224_26
  12. Slavinskaia, N. A. (2007). Proekt Evropeiskogo soiuza «Vysokoeffektivnaia gazovaia turbina s primeneniem sinteticheskogo gaza». Gazoturbinnye tekhnologii, 24–27.
  13. Lebedev, A. S., Simin, N. O., Tarasov, D. S., IUshkevich, A. V. (2010). Rabota kamer sgoraniia GTU na produktakh gazifikatsii tverdogo topliva. Teploenergetika, 6, 73–79.
  14. Serbyn, S. Y., Honcharova, N. A., Vylkul, V. V. (2015). Studying the peculiarities of the working process in the combustion chamber of synthetic gas-operated turbine engine of 2.5MW. Visnyk NTU «KhPI», 16 (1125), 14–18. Available at: http://repository.kpi.kharkov.ua/handle/KhPI-Press/17564
  15. Escudero, M., Jiménez, Á., González, C., Nieto, R., López, I. (2012). Analysis of the behaviour of biofuel-fired gas turbine power plants. Thermal Science, 16 (3), 849–864. doi: http://doi.org/10.2298/tsci120216131e
  16. Gómez, M., Amell, A., Zapata, L. (2015). Spark ignition engine performance and emissions in a high compression engine using biogas and methane mixtures without knock occurrence. Thermal Science, 19 (6), 1919–1930. doi: http://doi.org/10.2298/tsci140829119g
  17. Rowhani, A., Tabejamaat, S. (2015). Experimental study of the effects of swirl and air dilution on biogas non-premixed flame stability. Thermal Science, 19 (6), 2161–2169. doi: http://doi.org/10.2298/tsci130112157r
  18. Butovskii, L. S., Granovskaia, E. A., Fialko, N. M. (2010). Ustoichivost fakela za ploskim stabilizatorom pri podache gaza vnedreniem v vozdushnii potok. Tekhnologicheskie sistemy, 3 (52), 72–76. Available at: http://technological-systems.net/index.php/Home/article/view/455
  19. Butovskii, L. S., Granovskaia, E. A., Fialko, N. M., Strokin, V. N., Shvetsova, L. A. (2011). Povyshenie ustoichivosti fakela pri podache gaza v zonu retsirkuliatsii za stabilizatorom. Tekhnologicheskie sistemy, 3 (56), 74–81.
  20. Jet- derived low-NOx combustors to be offered for Land-based mashines (1990). Gas Turbine World, 20 (6), 30.
  21. Keppel, W. (1994). 20 jahre ABB – gasturbinen typ 13: von 55 bis 165 MWt – spiegelbild einer evolution. VGB Kraftwerkstechnik, 74, Heft 4, 361–372.
  22. Funke, H. H.-W., Keinz, J., Kusterer, K., Ayed, A. H., Kazari, M., Kitajima, J. et. al. (2017). Development and Testing of a Low NOx Micromix Combustion Chamber for Industrial Gas Turbines. International Journal of Gas Turbine, Propulsion and Power Systems, 9 (1), 27–36. doi: http://doi.org/10.38036/jgpp.9.1_27
  23. Sudarev, A. V., Butovsky, L. S., Granovskya, E. A. (1994). Process studies applied to ceramic gas turbine engine low-emission double-zone micro-diffusion combustion chamber. ASME Paper, 94-GT-445. Hagus, 6. doi: http://doi.org/10.1115/94-gt-445
  24. Gadde, S., Wu, J., Gulati, A., McQuiggan, G., Koestlin, B., Prade, B. (2006). Syngas capable combustion systems development for advanced Gas turbines. ASME TURBO EXPO 2006. Paper GT 2006-90970. Barcelona. doi: http://doi.org/10.1115/gt2006-90970
  25. Lefebvre, A. H., Ibrahim, A. R. A. F., Benson, N. C. (1966). Factors affecting fresh mixture entrainment in bluff-body stabilized flames. Combustion and Flame, 10 (3), 231–239. doi: http://doi.org/10.1016/0010-2180(66)90079-4
  26. Chigier, N. A., Mech, A. M. I., Gilbert, J. L. (1968). Recirculation Eddies in the Wake of Flameholders. Journal of the Institute of Fuel, 3, 105–112.
  27. Winterfeld, G. (1965). On processes of turbulent exchange behind flame holders. Symposium (International) on Combustion, 10 (1), 1265–1275. doi: http://doi.org/10.1016/s0082-0784(65)80261-2
  28. Abdulin, M. Z., Siryi, A., Tkachenko, O. M., Kunyk, A. A. (2020). Boilers modernization due to energy-ecological improvement technology of burning. Bulgarian Chemical Communications, 52, 14–19. Available at: http://www.bcc.bas.bg/bcc_volumes/Volume_52_Special_F_2020/BCC-52-F-2020-14-19-Abdulin-2.pdf
  29. Raushenbakh, B. V., Belii, S. A., Bespalov, I. V. et. al. (1964). Fizicheskie osnovy rabochego protsessa v kamerakh sgoraniia vozdushno-reaktivnykh dvigatelei. Moscow: Mashinostroenie, 526.
  30. Bauer, A. B. (1967). Some experiments in the near wake of cones. AIAA Journal, 5 (7), 1356–1358. doi: http://doi.org/10.2514/3.4202
  31. Ansys Fluent 14.0 Theory Guide from https://www.scribd.com/doc/140163341/Ansys-Fluent-14-0-Theory-Guide

Downloads

Published

2021-10-31

How to Cite

Chernousenko, O., Butovsky, L., Hranovska, O., Moroz, O., & Starchenko, O. (2021). Determining basic characteristics of stabilizer micro torch burners for the combustion of ballasted fuel gases. Eastern-European Journal of Enterprise Technologies, 5(8 (113), 51–65. https://doi.org/10.15587/1729-4061.2021.242984

Issue

Section

Energy-saving technologies and equipment