Development of a method of assessment of ecological risk of surface water pollution by nitrogen compounds

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.243058

Keywords:

risk of contamination with nitrogen compounds, sensitivity coefficient, risk assessment scale

Abstract

A method has been developed for quantitative and qualitative assessment of the risk of surface water pollution by nitrogen compounds based on the use of the indicator of the total content of inorganic nitrogen forms in water (Ninorg), that is,   This indicator is considered as the sensitivity coefficient kn. The choice of the indicator is dictated by the need to protect waters from pollution caused by nitrogen compounds during their flow from agricultural sources (Directive 91/676 /EU). The experience of developed countries has shown that nitrogen compounds deteriorate the quality of water and prevent the achievement of a "good ecological state" of water bodies. For territories with developed agriculture, it is important to establish environmental risks of damage depending on the degree of nitrogen pollution. Quantitative assessments of environmental risk are provided on the basis of a probabilistic approach. The risk was calculated as the product of the probability of a hazardous event occurring multiplied by the consequences of this event. The consequences of river pollution with nitrogen compounds were assessed as the ratio of the total concentration of nitrogen compounds (sensitivity index kn) to its threshold value (50 mg/dm3 or 11.3 mgN/dm3). In order to develop a scale for qualitative and quantitative risk assessment, relationships were established between the sensitivity indicators kн and the risk indicators R' for individual rivers, and for the study area as a whole, by means of spatio-temporal generalization. The probabilistic characteristics of possible environmental damage were determined on the basis of the obtained regression equations of the form R'=f(kn) and the statistical law of distribution of the risk value R'. The developed method will make it possible to determine the rank of the risk zone and the probability of getting into it, depending on the given sensitivity indicator kn

Author Biographies

Nataliia Loboda, Odessa State Environmental University

Doctor of Geographical Sciences, Professor

Department of Hydroecology and Water Research

Maria Daus, Odessa National Maritime University

PhD, Associate Professor

Department of Life and Occupational Safety, Ecology and Chemistry

References

  1. Gao, Y., Yu, G., Luo, C., Zhou, P. (2012). Groundwater Nitrogen Pollution and Assessment of Its Health Risks: A Case Study of a Typical Village in Rural-Urban Continuum, China. PLoS ONE, 7 (4), e33982. doi: https://doi.org/10.1371/journal.pone.0033982
  2. Wegahita, N. K., Ma, L., Liu, J., Huang, T., Luo, Q., Qian, J. (2020). Spatial Assessment of Groundwater Quality and Health Risk of Nitrogen Pollution for Shallow Groundwater Aquifer around Fuyang City, China. Water, 12 (12), 3341. doi: https://doi.org/10.3390/w12123341
  3. Kakade, A., Salama, E.-S., Han, H., Zheng, Y., Kulshrestha, S., Jalalah, M. et. al. (2021). World eutrophic pollution of lake and river: Biotreatment potential and future perspectives. Environmental Technology & Innovation, 23, 101604. doi: https://doi.org/10.1016/j.eti.2021.101604
  4. Zaprovadzhennia yevropeiskykh ekolohichnykh standartiv do haluzi tvarynnytstva Ukrainy (2018). Analitychnyi dokument. Praha-Kyiv. Available at: https://issuu.com/ecoact/docs/policy-paper-ukrainian_007
  5. Osadcha, N. M., Ukhan, O. O., Chekhniy, V. M., Holubtsov, O. H. (2019). Otsinka emisiyi biohennykh elementiv ta orhanichnykh rechovyn u poverkhnevi vody baseinu r. Siverskyi Donets vid dyfuznykh dzherel. Problemy hidrolohiyi, hidrokhimiyi, hidroekolohiyi. Kyiv: Nika-Tsentr, 199–200.
  6. Osadcha, N. M., Osadchyi, V. I., Ukhan, O. O., Klebanov, D. O., Luzovitska, Yu. A., Biletska, S. V. (2019). Antropohenne navantazhennia biohennymy elementamy na poverkhnevi vody baseiniv nyzhnoho Dunaiu, Dnistra ta Prutu. Hidrolohiya, hidrokhimiya i hidroekolohiya, 3, 77–78. Available at: http://nbuv.gov.ua/UJRN/glghge_2019_3_36
  7. Implementation of the Nitrate Pollution Prevention Regulations 2015 in England. Method for designating Nitrate Vulnerable Zones for surface freshwaters. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/573530/surface-water-nvz-methodology-2017-2020.pdf
  8. Kadiri, M., Zhang, H., Angeloudis, A., Piggott, M. D. (2021). Evaluating the eutrophication risk of an artificial tidal lagoon. Ocean & Coastal Management, 203, 105490. doi: https://doi.org/10.1016/j.ocecoaman.2020.105490
  9. Ravindranath, I. G., Thirukumaran, V. (2021). Spatial mapping for Groundwater Vulnerability to Pollution Risk Assessment Using DRASTIC Model in Ponnaiyar River Basin, South India. Journal of Geology, Geography and Geoecology, 30 (2), 355–364. doi: https://doi.org/10.15421/112132
  10. Triassi, M., Nardone, A., Giovinetti, M. C., De Rosa, E., Canzanella, S., Sarnacchiaro, P., Montuori, P. (2019). Ecological risk and estimates of organophosphate pesticides loads into the Central Mediterranean Sea from Volturno River, the river of the “Land of Fires” area, southern Italy. Science of The Total Environment, 678, 741–754. doi: https://doi.org/10.1016/j.scitotenv.2019.04.202
  11. Ding, T.-T., Du, S.-L., Huang, Z.-Y., Wang, Z.-J., Zhang, J., Zhang, Y.-H. et. al. (2021). Water quality criteria and ecological risk assessment for ammonia in the Shaying River Basin, China. Ecotoxicology and Environmental Safety, 215, 112141. doi: https://doi.org/10.1016/j.ecoenv.2021.112141
  12. Rao, K., Tang, T., Zhang, X., Wang, M., Liu, J., Wu, B. et. al. (2021). Spatial-temporal dynamics, ecological risk assessment, source identification and interactions with internal nutrients release of heavy metals in surface sediments from a large Chinese shallow lake. Chemosphere, 282, 131041. doi: https://doi.org/10.1016/j.chemosphere.2021.131041
  13. Muller, G. (1969). Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal, 2, 108–118.
  14. Walling, D. E., Webb, B. W. (1985). Estimating the discharge of contaminants to coastal waters by rivers: Some cautionary comments. Marine Pollution Bulletin, 16 (12), 488–492. doi: https://doi.org/10.1016/0025-326x(85)90382-0
  15. akahashi, M., Nakatani, N., Majima, T., Hara, S., Shirota, H. (2016). Environmental risk assessment on coastal ecosystem owing to the stranded oil. OCEANS 2016 - Shanghai. doi: https://doi.org/10.1109/oceansap.2016.7485621
  16. Belskaya, E. N., Brazgovka, O. V., Sugak, E. V. (2014). Method of calculation the environmental risks. Modern problems of science and education, 6. Available at: https://science-education.ru/ru/article/view?id=15755
  17. Vodnyi Kodeks Ukrainy. Verkhovna Rada Ukrainy. Available at: https://zakon.rada.gov.ua/laws/show/213/95-%D0%B2%D1%80#Text
  18. Shvebs, H. I., Ihoshyn, M. I. (2003). Kataloh richok i vodoim Ukrainy. Odessa: Astroprynt, 392.
  19. Loboda, N. S., Gryb, O. M. (2017). Hydroecological Problems of the Kuyalnyk Liman and Ways of Their Solution. Hydrobiological Journal, 53 (6), 87–95. doi: https://doi.org/10.1615/hydrobj.v53.i6.90
  20. Daus, M. Ye., Pintiyska, O. S., Polishchuk, O. O., Tvardievych, N. Yu. (2014). Otsinka yakosti vody malykh richok Pivnichno-Zakhidnoho Prychornomoria. Vestnik Gidrometcentra Chernogo i Azovskogo morey, 1 (16), 77–83.
  21. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32000L0060
  22. Consolidated text: Council Directive of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources (91/676/EEC). Available at: https://eur-lex.europa.eu/eli/dir/1991/676/2008-12-11
  23. Shurda, K. E. (2020). Basic risk assessment methods. Annali d’Italia, 2 (11), 50–53.
  24. Shurda, K. (2020). Methods of qualitative and quantitative risk analysis. Balanced Nature Using, 4, 64–72. doi: https://doi.org/10.33730/2310-4678.4.2020.226622
  25. Metodychni rekomendatsiyi shchodo otsinky ymovirnosti ryzykovykh podiy vnaslidok zabrudnennia vodnykh obiektiv ta gruntiv ukrainskoi chastyny Nyzhnodunaiskoho rehionu (2016). Odessa: FOP Shylov M.V.
  26. Ventcel', E. S. (1999). Teoriya veroyatnostey. Moscow: Vysshaya shkola.
  27. Shkolnyi, Ye. P., Loieva, I. D., Honcharova, L. D. (1999). Obrobka ta analiz hidrometeorolohichnoi informatsiyi. Kyiv: Minosvity Ukrainy. Available at: http://eprints.library.odeku.edu.ua/id/eprint/451/1/Shkolnyiy_Obrobka_ta_analiz_GMI_1999.pdf
  28. Common implementation strategy for the water framework directive (2000/60/EC). Guidance Document No 3. Analysis of Pressures and Impacts (2003). European Communities. Available at: https://circabc.europa.eu/sd/a/7e01a7e0-9ccb-4f3d-8cec-aeef1335c2f7/Guidance%20No%203%20-%20pressures%20and%20impacts%20-%20IMPRESS%20(WG%202.1).pdf
  29. Loboda, N. S., KatynskaІ. V. (2020). Determination of main anthropogenic impacts and environmental risks for the Kryvyi Torets river basin (based on the EU Support Program for Ukrainian water policy). Ukrainian Hydrometeorological Journal, 25, 81–92. doi: https://doi.org/10.31481/uhmj.25.2020.08
  30. Vasenko, O. H., Rybalova, O. V., Artemiev, S. R. (2015). Intehralni ta kompleksni otsinky stanu navkolyshnoho pryrodnoho seredovyshcha. Kharkiv: NUHZU. Available at: http://repositsc.nuczu.edu.ua/bitstream/123456789/6524/1/%D0%9E%D0%A0%D0%98%D0%93%20%D1%87%D0%B0%D1%81%D1%82%D1%8C%201%20%D0%B8%D1%81%D0%BF%D1%80%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%BE%20%D0%B0%D0%B2%D1%82%D0%BE%D1%80%D0%BE%D0%BC.pdf
  31. Rybalova, O. V., Korobkina, K. M., Horban, A. V. (2021). Yakisnyi stan atmosfernoho povitria v Ukraini. The 5th International scientific and practical conference “Science and education: problems, prospects and innovations”. Kyoto, 829–838. Available at: http://repositsc.nuczu.edu.ua/bitstream/123456789/12563/1/%D0%AF%D0%BA%D1%96%D1%81%D0%BD%D0%B8%D0%B9%20%D1%81%D1%82%D0%B0%D0%BD%20%D0%B0%D1%82%D0%BC%D0%BE%D1%81%D1%84%D0%B5%D1%80%D0%BD%D0%BE%D0%B3%D0%BE%20%D0%BF%D0%BE%D0%B2%D1%96%D1%82%D1%80%D1%8F%20%D0%B2%20%D0%A3%D0%BA%D1%80%D0%B0%D1%97%D0%BD%D1%96.pdf
  32. Rybalova, O. V., Bielan, S. V. (2013). Ekolohichnyi ryzyk pohirshennia stanu gruntiv i zemelnykh resursiv Ukrainy. Ekologiya i promyshlennost', 3, 15–22. Available at: http://nbuv.gov.ua/UJRN/ekolprom_2013_3_5
  33. Serbov, M., Hryb, O., Pylypiuk, V. (2021). Assessment of the ecological risk of pollution of soil and bottom sediments in the Ukrainian Danube region. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 137–144. doi: https://doi.org/10.33271/nvngu/2021-2/137
  34. Loboda, N. S., Kulachok, K. V. (2019). Metodychni pidkhody do otsinky ekolohichnykh ryzykiv na bazi vykorystannia kompleksnykh pokaznykiv yakosti vody. Zbirnyk naukovykh prats. VII All-Ukrainian Congress of Ecologists with International Participation. Vinnytsia. 75. Available at: http://eprints.library.odeku.edu.ua/id/eprint/6160/1/LobodaNS_KulachokKV_Conf_7vze_2019.pdf
  35. Daus, M. E., Daus, Y. V. (2021). Estimating environmental risk assessment for drinking and fisheries use (on the example of the Danube river – the city Vilkovo). Journal of Geology, Geography and Geoecology, 30 (1), 25–33. doi: https://doi.org/10.15421/112103
  36. Burkynskyi, B. V., Rubel, O. Ye. (2016). Otsinka ryzykiv dlia zdorovia liudyny ta navkolyshnoho seredovyshcha vid dzherel zabrudnennia gruntu ta vod. Zvit “Inventaryzatsiya, otsinka ta zmenshennia vplyvu antropohennykh dzherel zabrudnennia v Nyzhnodunaiskomu rehioni Ukrainy, Rumunii, respubliky Moldova, 2007-2013” (MIS ETC CODE 995). NAN Ukrainy, Instytut problem rynku ta ekoloho-ekonomichnykh doslidzhen. Odessa, 84.
  37. Osadchyy, V., Nabyvanets, B., Linnik, P., Osadcha, N., Nabyvanets, Y. (2016). Processes Determining Surface Water Chemistry. Springer, 265. doi: https://doi.org/10.1007/978-3-319-42159-9
  38. Pro zatverdzhennia Metodyky vyznachennia zon, vrazlyvykh do (nakopychennia) nitrativ. Ministerstvo zakhystu dovkillia ta pryrodnykh resursiv Ukrainy. Nakaz No. 244 (z0776-21). vid 15.04.2021. Available at: https://zakon.rada.gov.ua/laws/card/z0776-21
  39. Osadcha, N. M., Osadchyi, V. I., Osypov, V. V., Biletska, S. V., Kovalchuk, L. A., Artemenko, V. A. (2020). Methodology for the nitrate vulnerable zones designation in surface and ground water. Ukrainian Geographical Journal, 4 (112), 38–48. doi: https://doi.org/10.15407/ugz2020.04.038
  40. Camargo, J. A., Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32 (6), 831–849. doi: https://doi.org/10.1016/j.envint.2006.05.002
  41. Billen, G., Garnier, J. (2007). River basin nutrient delivery to the coastal sea: Assessing its potential to sustain new production of non-siliceous algae. Marine Chemistry, 106 (1-2), 148–160. doi: https://doi.org/10.1016/j.marchem.2006.12.017

Downloads

Published

2021-10-31

How to Cite

Loboda, N., & Daus, M. (2021). Development of a method of assessment of ecological risk of surface water pollution by nitrogen compounds. Eastern-European Journal of Enterprise Technologies, 5(10 (113), 15–25. https://doi.org/10.15587/1729-4061.2021.243058