Development of a method for differential analysis of data on the arterial blood oxygenation in healthy adults

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.244924

Keywords:

arterial blood oxygenation, variability, differential analysis, Poisson and Erlang distributions, COVID-19

Abstract

Monitoring of arterial blood saturation with oxygen (oxygenation) has gained special significance as a result of the COVID-19 pandemic. A new method for computer processing of saturation records (so-called SaO2 signals), based on the study of differentials (increments) from signals, was proposed. Finding a differential for a time series involves calculating the difference between the pairs of its adjacent elements. The differential is non-zero only if the elements in a pair are different. The study of differentials together with primary signals for a set of records (20 subjects) shows that the spectrum of observed levels of blood saturation is discrete and limited (from 2 to 10 levels). In addition, changes in saturation levels (switches) occur only between the nearest levels.

New indicators of the variability of blood saturation were proposed. These are the frequencies of saturation level switches (event intensities) and the intervals between them. It was established that these indicators are described by statistical distributions of Poisson and Erlang, respectively. Comparison of new variability indicators with the most reliable statistical – inter-quartile range – indicates that the new indicators also provide for the division of the data set into three subgroups according to the magnitude of variability. This division is statistically significant at a confidence level of 0.99 in both approaches, however, the division into sub-groups is slightly different in these methods.

It was shown that the proposed indicators of the variability of SaO2 signals are scale-invariant, that is, they do not depend on the length of observation interval. This is a consequence of the fractality of the positions of differentials in the observation interval. The established switch frequencies for subgroups in order of increasing variability are (0.06, 0.11, and 0.20) Hz. These frequencies are manifested on Fourier spectra of differentials of SaO2

Author Biographies

Gennady Chuiko, Petro Mohyla Black Sea National University

Doctor of Physical and Mathematical Sciences, Professor

Department of Computer Engineering

Yevhen Darnapuk, Petro Mohyla Black Sea National University

Postgraduate Student

Department of Computer Engineering

References

  1. Herrmann, J., Mori, V., Bates, J. H. T., Suki, B. (2020). Modeling lung perfusion abnormalities to explain early COVID-19 hypoxemia. Nature Communications, 11 (1). doi: http://doi.org/10.1038/s41467-020-18672-6
  2. Kashani, K. B. (2020). Hypoxia in COVID-19: Sign of Severity or Cause for Poor Outcomes. Mayo Clinic Proceedings, 95 (6), 1094–1096. doi: http://doi.org/10.1016/j.mayocp.2020.04.021
  3. Xie, J., Covassin, N., Fan, Z., Singh, P., Gao, W., Li, G. et. al. (2020). Association Between Hypoxemia and Mortality in Patients With COVID-19. Mayo Clinic Proceedings, 95 (6), 1138–1147. doi: http://doi.org/10.1016/j.mayocp.2020.04.006
  4. Hypoxemia (low blood oxygen) (2018). Mayo Clinic. Available at: https://www.mayoclinic.org/symptoms/hypoxemia/basics/definition/sym-20050930 Last accessed: 21.09.2021
  5. Niknafs, P., Norouzi, E., Bahman, B. B., Baneshi, M. R. (2015). Can we Replace Arterial Blood Gas Analysis by Pulse Oximetry in Neonates with Respiratory Distress Syndrome who are Treated According to INSURE Protocol? Iranian Journal of Medical Sciences, 40 (3), 264–267. Available at: https://www.researchgate.net/publication/277080542_Can_we_Replace_Arterial_Blood_Gas_Analysis_by_Pulse_Oximetry_in_Neonates_with_Respiratory_Distress_Syndrome_who_are_Treated_According_to_INSURE_Protocol Last accessed: 21.09.2021
  6. Jubran, A. (2015). Pulse oximetry. Critical Care, 19 (1). doi: http://doi.org/10.1186/s13054-015-0984-8
  7. Mack, E. (2007). Focus on Diagnosis: Co-oximetry. Pediatrics in Review, 28 (2), 73–74. doi: http://doi.org/10.1542/pir.28-2-73
  8. Chushkin, M., Popova, L., Shergina, E,, Krasnikova, E., Gordeeva, O., Karpina, N. (2020). Comparative analysis of the arterial oxygen saturation (SaO2) and pulse oximetry measurements (SpO2) in patients with pulmonary tuberculosis. European Respiratory Journal, 56. doi: http://doi.org/10.1183/13993003.congress-2020.3209
  9. Wilson-Baig, N., McDonnell, T., Bentley, A. (2021). Discrepancy between SpO2 and SaO2 in patients with COVID‐19. Anaesthesia, 76 (S3), 6–7. doi: http://doi.org/10.1111/anae.15228
  10. Shenoy, N., Luchtel, R., Gulani, P. (2020). Considerations for target oxygen saturation in COVID-19 patients: are we under-shooting? BMC Medicine, 18 (1). doi: http://doi.org/10.1186/s12916-020-01735-2
  11. Fossion, R., Fossion, J. P. J., Rivera, A. L., Lecona, O. A., Toledo-Roy, J. C., García-Pelagio, K. P. et. al.; Olivares-Quiroz, L., Resendis-Antonio, O. (Eds.) (2018). Homeostasis from a Time-Series Perspective: An Intuitive Interpretation of the Variability of Physiological Variables. Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues. Cham: Springer, 87–109. doi: http://doi.org/10.1007/978-3-319-73975-5_5
  12. Chuiko, G., Dvornik, O., Darnapuk, Y., Baganov, Y. (2021). Devising a new filtration method and proof of self-similarity of electromyograms. Eastern-European Journal of Enterprise Technologies, 4 (9 (112)), 15–22. doi: http://doi.org/10.15587/1729-4061.2021.239165
  13. Yoshida, M., Onda, K., Wada, Y., Kuwahara, M. (2015). Influence of sickness condition on diurnal rhythms of heart rate and heart rate variability in cows. Journal of Veterinary Medical Science, 77 (3), 375–379. doi: http://doi.org/10.1292/jvms.14-0402
  14. Bhogal, A. S., Mani, A. R. (2017). Pattern Analysis of Oxygen Saturation Variability in Healthy Individuals: Entropy of Pulse Oximetry Signals Carries Information about Mean Oxygen Saturation. Frontiers in Physiology, 8. doi: http://doi.org/10.3389/fphys.2017.00555
  15. Frost, J. (2019). Introduction to Statistics: An Intuitive Guide for Analyzing Data and Unlocking Discoveries. Available at: https://www.goodreads.com/book/show/53632396-introduction-to-statistics Last accessed: 21.09.2021
  16. Chuiko, G., Darnapuk, Y., Dvornik, O., Kraynik, Y., Yaremchuk, O., Haab, R. (2021). A New Way of Data Analysis and Rating of the Blood Oxygen Saturation Variability. 2021 IEEE 12th International Conference on Electronics and Information Technologies (ELIT), 51–54. doi: http://doi.org/10.1109/elit53502.2021.9501109
  17. Chuiko, G., Darnapuk, Y., Dvornik, O., Kraynik, Y., Yaremchuk, O., Davidenko, A. (2021). "Devil`s stairs", Poisson`s Statistics, and Patient Sorting via Variabilities for Oxygenation: All from Arterial Blood Gas Data. doi: http://doi.org/10.1101/2021.08.10.455835
  18. Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G. et. al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals.. Circulation, 101 (23), e215–e220. doi: http://doi.org/10.1161/01.cir.101.23.e215
  19. Ghassemi, M., Moody, B., Lehman, L., Song, C., Li, Q., Sun, H. et. al. (2018). You Snooze, You Win: The PhysioNet/Computing in Cardiology Challenge 2018. 2018 Computing in Cardiology Conference (CinC). doi: http://doi.org/10.22489/cinc.2018.049
  20. Bernardin, L., Chin, P., DeMarco, P., Geddes, K. O., Hare, D. E. G., Heal, K. M. et. al. (2020). Maple Programming Guide. Maplesoft, a division of Waterloo Maple Inc. Available at: https://maplesoft.com/documentation_center/maple2020/ProgrammingGuide.pdf Last accessed: 21.09.2021
  21. Karlis, D., Xekalaki, E. (2007). Mixed Poisson Distributions. International Statistical Review, 73 (1), 35–58. doi: http://doi.org/10.1111/j.1751-5823.2005.tb00250.x
  22. Scott, D. W. (2010). Averaged shifted histogram. Wiley Interdisciplinary Reviews: Computational Statistics, 2 (2), 160–164. doi: http://doi.org/10.1002/wics.54
  23. Weglarczyk, S. (2018). Kernel density estimation and its application. ITM Web of Conferences, XLVIII Seminar of Applied Mathematics, 23 (2). doi: http://doi.org/10.1051/itmconf/20182300037
  24. Tetrax: Fourier transformation of postural sway, Sunlight. Available at: http://postureetmesure.free.fr/docs/TetraxFourierTransformation.pdf Last accessed: 21.09.2021
  25. Amaral, L. (2012). A Brief Overview of Multifractal Time Series. Available at: https://archive.physionet.org/tutorials/multifractal/ Last accessed: 21.09.2021
  26. Banerjee, S., Easwaramoorthy, D., Gowrisankar, A. (2021). Fractal Functions, Dimensions and Signal Analysis. Cham: Springer. doi: http://doi.org/10.1007/978-3-030-62672-3

Downloads

Published

2021-12-16

How to Cite

Chuiko, G., & Darnapuk, Y. (2021). Development of a method for differential analysis of data on the arterial blood oxygenation in healthy adults. Eastern-European Journal of Enterprise Technologies, 6(4 (114), 37–43. https://doi.org/10.15587/1729-4061.2021.244924

Issue

Section

Mathematics and Cybernetics - applied aspects