Determination of the heat transfer coefficient of a rotary film evaporator with a heating film-forming element
DOI:
https://doi.org/10.15587/1729-4061.2021.247283Keywords:
heat transfer coefficient, rotary film evaporator, criterion equation, film-forming element, organic raw materialsAbstract
A model of a rotary film evaporator with a film-forming element with a reflective heated surface has been developed. This will allow stabilizing the hydraulic movement of the cut wave flow due to the reflective surface of the geometric shape for the forced direction of the cut raw material to the heating surface. Autonomous heating of the reflective surface additionally provides a temperature effect in the conditions of movement of particles of raw materials after cutting.
The analysis of the experimental and theoretical parameters of heat transfer made it possible to substantiate the criterion equation for determining the heat transfer coefficient of an evaporator with the proposed film-forming element and a reflective heated surface for calculating the coefficient from the working surface to the raw material. The resulting equation takes into account the influence of the vertical component of the motion of the raw material film, centrifugal movement during the rotation of the film-forming element, mixing of the boiling film of the raw material with steam bubbles, and the geometric characteristics of the film-forming blade on the hydrodynamic flow of the raw material. The calculation of the rotary-film evaporator was carried out using the criterion equation and the obtained useful heat exchange surface – 0.75 m2. The specific metal consumption in a rotary film evaporator with a film-forming element having a reflective surface is 57 kg/m2, compared to the vacuum evaporator traditionally used in canning industries (410 kg/m2), which is 7.1 times less. The duration of the temperature effect on the raw material is also reduced: a rotary film evaporator – 200 s and 3600 s in a traditional apparatus. The data obtained will be useful for the design of rotary-film devices of different geometric parameters using articulated blades with a reflective plate.
References
- Shkuratov, O. I., Drebot, O. I., Chudovska, V. A. et. al. (2014). Kontseptsiya rozvytku orhanichnoho zemlerobstva v Ukraini do 2020 roku. Kyiv: TOV «Ekoinvestkom», 16.
- Terpou, A., Papadaki, A., Bosnea, L., Kanellaki, M., Kopsahelis, N. (2019). Novel frozen yogurt production fortified with sea buckthorn berries and probiotics. LWT, 105, 242–249. doi: https://doi.org/10.1016/j.lwt.2019.02.024
- Pap, N., Fidelis, M., Azevedo, L., do Carmo, M. A. V., Wang, D., Mocan, A. et. al. (2021). Berry polyphenols and human health: evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Current Opinion in Food Science, 42, 167–186. doi: https://doi.org/10.1016/j.cofs.2021.06.003
- Misra, N. N., Koubaa, M., Roohinejad, S., Juliano, P., Alpas, H., Inácio, R. S. et. al. (2017). Landmarks in the historical development of twenty first century food processing technologies. Food Research International, 97, 318–339. doi: https://doi.org/10.1016/j.foodres.2017.05.001
- Boesveldt, S., Bobowski, N., McCrickerd, K., Maître, I., Sulmont-Rossé, C., Forde, C. G. (2018). The changing role of the senses in food choice and food intake across the lifespan. Food Quality and Preference, 68, 80–89. doi: https://doi.org/10.1016/j.foodqual.2018.02.004
- Silveira, A. C. P. (2015). Thermodynamic and hydrodynamic characterization of the vacuum evaporation process during concentration of dairy products in a falling film evaporator. Food and Nutrition. Agrocampus Ouest. Available at: https://tel.archives-ouvertes.fr/tel-01342521/document
- Crespí-Llorens, D., Vicente, P., Viedma, A. (2018). Experimental study of heat transfer to non-Newtonian fluids inside a scraped surface heat exchanger using a generalization method. International Journal of Heat and Mass Transfer, 118, 75–87. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.115
- Cokgezme, O. F., Sabanci, S., Cevik, M., Yildiz, H., Icier, F. (2017). Performance analyses for evaporation of pomegranate juice in ohmic heating assisted vacuum system. Journal of Food Engineering, 207, 1–9. doi: https://doi.org/10.1016/j.jfoodeng.2017.03.015
- Zahorulko, A., Zagorulko, A., Yancheva, M., Ponomarenko, N., Tesliuk, H., Silchenko, E. et. al. (2020). Increasing the efficiency of heat and mass exchange in an improved rotary film evaporator for concentration of fruit-and-berry puree. Eastern-European Journal of Enterprise Technologies, 6 (8 (108)), 32–38. doi: https://doi.org/10.15587/1729-4061.2020.218695
- Mykhailov, V., Zahorulko, A., Zagorulko, A., Liashenko, B., Dudnyk, S. (2021). Method for producing fruit paste using innovative equipment. Acta Innovations, 39, 15–21. doi: https://doi.org/10.32933/actainnovations.39.2
- Zahorulko, A., Zagorulko, A., Yancheva, M., Serik, M., Sabadash, S., Savchenko-Pererva, M. (2019). Development of the plant for low-temperature treatment of meat products using ir-radiation. Eastern-European Journal of Enterprise Technologies, 1 (11 (97)), 17–22. doi: https://doi.org/10.15587/1729-4061.2019.154950
- Imran, A., Rana, M. A., Siddiqui, A. M. (2018). Study of a Eyring–Powell Fluid in a Scraped Surface Heat Exchanger. International Journal of Applied and Computational Mathematics, 4 (1). doi: https://doi.org/10.1007/s40819-017-0436-z
- Martínez, D. S., Solano, J. P., Vicente, P. G., Viedma, A. (2019). Flow pattern analysis in a rotating scraped surface plate heat exchanger. Applied Thermal Engineering, 160, 113795. doi: https://doi.org/10.1016/j.applthermaleng.2019.113795
- Błasiak, P., Pietrowicz, S. (2019). A numerical study on heat transfer enhancement via mechanical aids. International Journal of Heat and Mass Transfer, 140, 203–215. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.116
- Acosta, C. A., Yanes, D., Bhalla, A., Guo, R., Finol, E. A., Frank, J. I. (2020). Numerical and experimental study of the glass-transition temperature of a non-Newtonian fluid in a dynamic scraped surface heat exchanger. International Journal of Heat and Mass Transfer, 152, 119525. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119525
- Cherevko, O., Mikhaylov, V., Zahorulko, A., Zagorulko, A., Gordienko, I. (2021). Development of a thermal-radiation single-drum roll dryer for concentrated food stuff. Eastern-European Journal of Enterprise Technologies, 1 (11 (109)), 25–32. doi: https://doi.org/10.15587/1729-4061.2021.224990
- Zahorulko, A. M., Zahorulko, O. Ye. (2016). Pat. No. 108041 UA. Hnuchkyi plivkovyi rezystyvnyi elektronahrivach vyprominiuiuchoho typu. No. u201600827; declareted: 02.20.2016; published: 24.06.2016, Bul. No. 12. Available at: https://uapatents.com/5-108041-gnuchkijj-plivkovijj-rezistivnijj-elektronagrivach-viprominyuyuchogo-tipu.html
- Vakuum-vyparnoy apparat MZS-320. Available at: https://www.mzko.com.ua/2015-08-03-00-59-07/vacuum-vyparnoy-apparat.html
- Cherevko, A., Mayak, O., Kostenko, S., A. Sardarov (2019). Experimental and simulation modeling of the heat exchanche process while boiling vegetable juice. Prohresyvni tekhnika ta tekhnolohiyi kharchovykh vyrobnytstv restorannoho hospodarstva i torhivli, 1, 75–85. Available at: http://nbuv.gov.ua/UJRN/Pt_2019_1_9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Andrii Zahorulko, Aleksey Zagorulko, Oleksander Cherevko, Olena Dromenko, Alla Solomon, Roman Yakobchuk, Oksana Bondarenko, Nataliia Nozdrina
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.