Device for germicidal air disinfection by ultraviolet radiation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.24822

Keywords:

UV radiation, UV devices, antibacterial disinfection, ultraviolet lamps, irradiators, bactericidal flow

Abstract

Air often becomes a source and a distributor of pathogens, that’s why one of the ways of germicidal public safety is the introduction of UV air disinfection methods. The UV methods, unlike chemical methods do not change the air composition and its organoleptic properties. The studies of these methods are especially noteworthy for scientists. The results of theoretical and experimental studies have shown that the methods, used in the design of closed-type devices for germicidal air disinfection, take into account the volume dose of bacterial inactivation, which depends on the chamber geometry. This disadvantage is solved by using the surface dose that does not depend on the chamber geometry and is a function of bacterial species. The design of the UV closed-type device for germicidal air disinfection is proposed. This device is made in the form of a cylindrical chamber from a special material, in which a germicidal lamp is placed symmetrically. The device capacity is calculated from the minimum irradiance conditions, which provides the required surface dose on any section of the inner surface of the chamber.

Author Biographies

Анатолій Олексійович Семенов, Poltava University of Economics and Trade, Koval 3, Poltava, Ukraine, 36000

Associate Professor

Department of Commodity nonfood items

Григорій Мефодійович Кожушко, Poltava University of Economics and Trade, Koval 3, Poltava, Ukraine, 36000

Professor

Department of Commodity nonfood items

References

  1. Keklik, N. M. Microbial decontamination of food by ultraviolet (UV) and pulsed UV light [Text] / N. M. Keklik, K. Krishnamurthy, A. Demirci // Microbial decontamination in the food industry. – 2012. – P. 344–369.
  2. Stephen, B. Germicidal ultraviolet irradiation. Modern and effective methods to combat pathogenic microorganisms [Text] / B. Stephen, Jr. Martin, D. Chuck, James D. Freihaut, William P. Bahnfleth, Josephine Lau, Ana Nedeljkovic-Davidovic // ASHRAE JOURNAL. – 2008 – Vol. 50 (8). – P. 18–20.
  3. Lee, B. Effects of installation location on performance and economics of in-duct ultraviolet germicidal irradiation systems for air disinfection [Text] / B. Lee, Р. William P. Bahnfleth // Building and Environment. – 2013 – Vol. 67. – P. 193-201.
  4. Gray, N. F. Ultraviolet Disinfection [Text] / N. F. Gray. – Microbiology of Waterborne Diseases (Second Edition), 2014. – P. 617-630.
  5. Вассерман, А. Л. Ультрафиолетовые бактерицидные установки для обеззараживания воздушной среды помещений [Текст] / А. Л. Вассерман. – М.: Изд-во дом света, 1999. – Вып. 8(20).
  6. Вассерман, А. Л. Сравнительные характеристики бактерицидных облучателей с ксеноновыми импульсными лампами и с ртутными лампами НД [Текст] / А. Л. Вассерман // Светотехника. – 2011. – № 5. – С. 51–52.
  7. Устройство для получения озона [Текст] : пат. 2080285 Рос. Федерация: МПК С 01 В 13/11 / Викторов А. И., Марунчак Н. М. – заявитель и патентообладатель Производственно-коммерческая и внедренческая компания "Альфа-Омега". – № 93038125/25 ; заявл. 26.07.1993; опубл. 27.05.1997.
  8. Устройство для обеззараживания воздуха [Текст] : пат. 2153886 Рос. Федерация: МПК A 61 L 9/20 / Сизиков В. П. – заявитель и патентообладатель Сизиков Владимир Петрович.-№99106031/14; заявл. 29.03.2000; опубл. 10.08.2000.
  9. Белявский, М. П. Методика контроля потока излучения бактерицидных ламп в процессе их эксплуатации [Текст] / М. П. Белявский, А. Л. Вассерман, П. В. Рубинштейн // Светотехника. – 2001. – № 1. – С. 6–8.
  10. Сарычев, Г. С. К расчету бактерицидных установок [Текст] / Г. С. Сарычев // Светотехника. – 2005. – № 1. – С. 62–63.
  11. Матвеев, А. Б. Электрические облучательные установки фотобиологического действия [Текст] / А. Б. Матвеев, С. М. Лебедкова, В. И. Петров; Под ред. д.т.н. С.П. Решенова. – М.: МЭИ, 1989.
  12. Kowalski, W. J. Mathematical Modeling of UVGI for Air Disinfection [Text] / W. J. Kowalski, W. Bahnfleth, D. L. Witham, B. F. Severin, T. S. Whittam. – Quantitative Microbiology 2, 2000. – P. 34–38.
  13. Kowalski, W. J. Airborne respiratory diseases and mechanical system for control of microbes [Text] / W. J. Kowalski, W. Bahnfleth // HPAC Engineering. – 1988. – Vol. 70 (7). – P. 34–38.
  14. Fridman, A. Decreasing operating room contamination of surfaces and air with pulsed xenon ultraviolet disinfection [Text] / A. Fridman, L. A. Bruno-Murtha, R. Osgood, J. McAllister // American Journal of Infection Control. – 2013. – Vol. 41 (6) – P. 36.
  15. Semenov, A. A. Bactericidal irradiators for ultraviolet disinfection of indoor air [Text] / A. A. Semenov, G. M. Kozhushko // European Applied Sciences. – 2013. – Vol. 1 (13). – P. 226–228.
  16. Keklik, N. M., Krishnamurthy, K., Demirci, A. (2012). Microbial decontamination of food by ultraviolet (UV) and pulsed UV light. Microbial decontamination in the food industry, 344–369.
  17. Stephen, B. Martin, Jr., Chuck, Dunn, James, D. Freihaut, William, P. Bahnfleth, Josephine, Lau, Nedeljkovic-Davidovic, Ana (2008). Germicidal ultraviolet irradiation. Modern and effective methods to combat pathogenic microorganisms. ASHRAE JOURNAL, 50 (8), 18–20.
  18. Lee, B., Bahnfleth, W. P. (2013). Effects of installation location on performance and economics of in-duct ultraviolet germicidal irradiation systems for air disinfection. Building and Environment, 67, 193–201.
  19. Gray, N. F. (2014). Ultraviolet Disinfection. Microbiology of Waterborne Diseases (Second Edition), 617–630.
  20. Wasserman, A. L. (1999). Ultraviolet germicidal disinfection systems for ambient air space. Moscow USSR: publishing House of Light, 8 (20).
  21. Wasserman, A. L. (2011). Comparative characteristics bactericidal irradiators with xenon flash lamps and mercury vapor lamps ND. Lighting, 5, 51–52.
  22. Victorov, A. I., Marunchak, N. M. (1997). The apparatus for producing ozone: Russian Federation Patent 2080285: IPC C 01 B 13/11; applicant and patentee, Production and Trade and Innovation Company "Alpha-Omega". № 93038125/25; appl. 26.07.1993; publ. 27.05.1997.
  23. Sizikov, V. P. (2000). Device for air disinfection: Russian Federation Patent 2153886: IPC A 61 L 9/20; applicant and patentee Sizikov Vladimir Petrovich. № 99106031/14; appl. 29.03.2000; publ. 10.08.2000.
  24. Bielawski, M. P., Wasserman, A. L., Rubinstein, P. V. (2001). Flow control technique germicidal radiation during their operation. Light engineering, 1, 6–8.
  25. Sarychev, G. S. (2005). By calculation bactericidal plants. Lighting Equipment, 1, 62–63.
  26. Matveev, A. B., Lebedkova, S. M., Petrov, V. I. (1989). Electric irradiators photobiological action. Ed. dts S.P. Reshenova. Moscow MEI.
  27. Kowalski, W. J., Bahnfleth, W., Witham, D. L., Severin, B. F., Whittam, T. S. (2000). Mathematical Modeling of UVGI for Air Disinfection. Quantitative Microbiology 2, 34–38.
  28. Kowalski, W. J., Bahnfleth, W. (1998). Airborne respiratory diseases and mechanical system for control of microbes. HPAC Engineering, 70 (7), 34–38.
  29. Fridman, A., Bruno-Murtha, L. A., Osgood, R., McAllister J. (2013). Decreasing operating room contamination of surfaces and air with pulsed xenon ultraviolet disinfection. American Journal of Infection Control, 41 (6), 36.
  30. Semenov, A. A., Kozhushko, G. M. (2013). Bactericidal irradiators for ultraviolet disinfection of indoor air. European Applied Sciences, 1 (13), 226–228.

Published

2014-06-20

How to Cite

Семенов, А. О., & Кожушко, Г. М. (2014). Device for germicidal air disinfection by ultraviolet radiation. Eastern-European Journal of Enterprise Technologies, 3(10(69), 13–17. https://doi.org/10.15587/1729-4061.2014.24822