Defining the features of structural and phase transformations in the recycling of anthropogenic metallurgical waste containing refractory elements
DOI:
https://doi.org/10.15587/1729-4061.2022.252321Keywords:
dross of alloy steels, oxide anthropogenic waste, reduction melting, X-ray phase studiesAbstract
This paper reports a study into the features of the phase composition and microstructure of a master alloy obtained by using the reduction melting of oxide man-made waste. That was necessary to define those technological indicators that provide for an increase in the degree of extraction of alloying elements during the recycling of anthropogenic raw materials and the subsequent use of the alloying material. It has been determined that the phase composition of the alloy at a Si:C ratio in the charge of 0.11 mainly consisted of a solid solution of elements in α-Fe, as well as carbides Fe3C and Fe3W3C. At the Si:C ratios in the charge of 0.28 and 0.52, along with a solid solution of the elements in α-Fe, Fe8Si2C, Fe5Si3, and FeSiC, FeSi2 manifested themselves, respectively. The microstructure of the alloy demonstrated a clear manifestation of several phases with different content of alloying elements. Changing a Si:C ratio in the charge from 0.11 to 0.28 and 0.52 led to an increase in the residual silicon content (wt %) in the studied areas, from 0.00–0.25 to 0.12–1.79 and 0.20–2.11, respectively. At the same time, the carbon content (wt %) in the examined areas varied from 0.25–2.12 to 0.24–2.52 and 0.45–2.68, respectively. The content of alloying elements in the investigated areas varied within (wt %): W – 0.00–43.06, Mo – 0.00–32.72, V – 0.19–20.72, Cr – 0.69–33.94, Co – 0.00–3.96. Analysis of the study’s results reveals that the most acceptable ratio of Si:C in the charge is 0.52. In this case, there is a certain content of residual silicon along with carbon in the form of carbosilicide and silicide compounds. Such indicators of the alloy provide sufficient reducing capacity of the alloy when used. The properties of the alloy make it possible, when smelting steels, to replace part of those standard ferroalloys that do not have strict carbon restrictions.
References
- Henckens, M. L. C. M., van Ierland, E. C., Driessen, P. P. J., Worrell, E. (2016). Mineral resources: Geological scarcity, market price trends, and future generations. Resources Policy, 49, 102–111. doi: https://doi.org/10.1016/j.resourpol.2016.04.012
- Vlasiuk Y., Pedchenko, G. (2017). The application of economic and mathematical methods in assessing of enterprises competitiveness. Zbirnyk naukovykh prats TDATU: ekonomichni nauky, 3 (35), 279–285.
- Mechachti, S, Benchiheub, O., Serrai, S., Shalabi, M. (2013). Preparation of iron Powders by Reduction of Rolling Mill Scale. International Journal of Scientific & Engineering Research, 4 (5), 1467–1472. Available at: https://www.researchgate.net/publication/269463295_Preparation_of_iron_Powders_by_Reduction_of_Rolling_Mill_Scale_International_Journal_of_Scientific_Engineering_Research_Volume_4_Issue_5_May-20131457-1472
- Grigor’ev, S. M., Petrishchev, A. S. (2012). Assessing the phase and structural features of the scale on P6M5Φ3 and P12M3K5Φ2 steel. Steel in Translation, 42 (3), 272–275. doi: https://doi.org/10.3103/s0967091212030059
- Smirnov, A. N., Petrishchev, A. S., Semiryagin, S. V. (2021). Reduction Smelting of Corrosion-Resistant Steel Waste: Aspects of Structural and Phase Transformations. Steel in Translation, 51 (7), 484–489. doi: https://doi.org/10.3103/s0967091221070093
- Petryshchev, A., Braginec, N., Borysov, V., Bratishko, V., Torubara, O., Tsymbal, B. et. al. (2019). Study into the structuralphase transformations accompanying the resourcesaving technology of metallurgical waste processing. Eastern-European Journal of Enterprise Technologies, 4 (12 (100)), 37–42. doi: https://doi.org/10.15587/1729-4061.2019.175914
- Grigor’ev, S. M., Petrishchev, A. S. (2012). Resource- and energy-conserving low-silicon alloys in the production of high-speed steel. Steel in Translation, 42 (5), 472–476. doi: https://doi.org/10.3103/s0967091212050051
- Azimi, G., Shamanian, M. (2010). Effects of silicon content on the microstructure and corrosion behavior of Fe–Cr–C hardfacing alloys. Journal of Alloys and Compounds, 505 (2), 598–603. doi: https://doi.org/10.1016/j.jallcom.2010.06.084
- Zhao, L., Wang, L., Chen, D., Zhao, H., Liu, Y., Qi, T. (2015). Behaviors of vanadium and chromium in coal-based direct reduction of high-chromium vanadium-bearing titanomagnetite concentrates followed by magnetic separation. Transactions of Nonferrous Metals Society of China, 25 (4), 1325–1333. doi: https://doi.org/10.1016/s1003-6326(15)63731-1
- Jung, W.-G., Back, G.-S., Johra, F. T., Kim, J.-H., Chang, Y.-C., Yoo, S.-J. (2018). Preliminary reduction of chromium ore using Si sludge generated in silicon wafer manufacturing process. Journal of Mining and Metallurgy, Section B: Metallurgy, 54 (1), 29–37. doi: https://doi.org/10.2298/jmmb170520054j
- Zhu, H., Li, Z., Yang, H., Luo, L. (2013). Carbothermic Reduction of MoO3 for Direct Alloying Process. Journal of Iron and Steel Research International, 20 (10), 51–56. doi: https://doi.org/10.1016/s1006-706x(13)60176-4
- Shveikin, G. P., Kedin, N. A. (2014). Products of carbothermal reduction of tungsten oxides in argon flow. Russian Journal of Inorganic Chemistry, 59 (3), 153–158. doi: https://doi.org/10.1134/s0036023614030206
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Vadym Volokh, Anatolii Poliakov, Mykhail Yamshinskij, Ivan Lukianenko, Andrey Andreev, Bohdan Tsymbal, Ganna Pedchenko, Tetiana Chorna, Tamara Bilko, Anatolii Dzyuba
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.