Estimation of the strength of vertical cylindrical liquid storage tanks with dents in the wall

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.252599

Keywords:

steel tank, stress concentration, defects in the form of dents, dimensionless parameters of dents, numerical method, modeling

Abstract

A multi-level mathematical model was used to estimate the stressed-strained state of a cylindrical reservoir with a defect in the wall shape in the form of a dent; the concentration of stresses in the defect zone was studied.

The proper choice of the mathematical model was verified; it has been shown that the engineering assessment of the stressed-strained state of the wall of a cylindrical tank with the variable thickness could employ ratios for a cylindrical shell with a constant wall thickness. The spread of values is 2‒10 %. This indicates the proper choice of the mathematical model, as well as the fact that it is possible, for an engineering assessment of the stressed-strained state of the wall of a cylindrical tank with variable thickness, to use the ratios for a cylindrical shell with a constant wall thickness.

The stressed-strained state of the dent zone in the tank wall was numerically estimated, which proved the assumption of significant stress concentrations in the dent zone and indicated the determining effect on the concentration of stresses in the dent zone exerted by its geometric dimensions and its depth in particular.

The concentration of stresses in the zone of dents in the tank wall was investigated in the ANSYS programming environment at different sizes of dents on the tank wall, for which two dimensionless parameters were introduced: the dimensionless radius of the dent and the dimensionless depth of the dent.

Based on the results of a numerical study into the stressed-strained state of the dent zone in the tank wall, graphic dependences were derived of the stress concentration coefficient on the dimensionless depth of the dent for various values of the dimensionless radius of dents, which does not exceed 2 % of the indicator.

Based on fitting the stress concentration curves on the dimensions of the dent and tank, a formula was derived for calculating the stress concentration coefficient as a function of the dimensionless radius ξ and the dimensionless depth ς of the dent. The resulting formula makes it possible, with known dimensionless parameters of the depth and radius of the dent, to determine the coefficients of stress concentration in the dented zone of the tank wall.

Author Biographies

Ulanbator Suleimenov, Mukhtar Auezov South Kazakhstan University

Doctor of Technical Sciences, Professor

Department of Architecture

Nurlan Zhangabay, Mukhtar Auezov South Kazakhstan University

PhD, Associate Professor

Department of Construction and Construction Materials

Akmaral Utelbayeva, Mukhtar Auezov South Kazakhstan University

Doctor of Chemical Sciences, Associate Professor

Department of Chemistry

Masrah Azrifan Azmi Murad, Universiti Putra Malaysia

PhDoctor, Professor, Deputy Dean (Reseach and Graduate Studies)

Aibarsha Dosmakanbetova, Mukhtar Auezov South Kazakhstan University

PhD, Associate Professor

Department of Mechanics and Mechanical Engineering

Khassen Abshenov, Mukhtar Auezov South Kazakhstan University

PhD, Associate Professor

Department of Mechanics and Mechanical Engineering

Svetlana Buganova, International Education Corporation

PhD, Associate Professor

Department of Building Technologies, Infrastructure and Management

Arman Moldagaliyev, Mukhtar Auezov South Kazakhstan University

PhD, Associate Professor

Department of Mechanics and Mechanical Engineering

Kuanysh Imanaliyev, Mukhtar Auezov South Kazakhstan University

PhD, Associate Professor

Department of Architecture

Bolat Duissenbekov, Mukhtar Auezov South Kazakhstan University

PhD

Department of Construction and Construction Materials

References

  1. Rahmatulina, G. (2012). Rynok nefteproduktov Kazahstana v ramkah tamozhennogo soyuza: Perspektivy razvitiya. Vestnik Instituta ekonomiki Rossiyskoy akademii nauk, 2/2012, 143–154. Available at: https://cyberleninka.ru/article/n/rynok-nefteproduktov-kazahstana-v-ramkah-tamozhennogo-soyuza-perspektivy-razvitiya
  2. Analiz rynka uslug hraneniya i skladirovaniya nefti i produktov ee pererabotki. Available at: https://gidmark.ru/cat1/analiz-rynka-uslug-hraneniya-i-skladirovaniya-nefti-i-produktov-ee-pererabotki
  3. Analiz rynka nefteproduktov v Kazahstane - 2021. Pokazateli i prognozy. Available at: https://tebiz.ru/mi/analiz-rynka-nefteproduktov-v-kazakhstane
  4. Shvyrkov, S. A., Goryachev, S. A., Sorokoumov, V. P., Batmanov, S. V., Vorob'yov, V. V. (2007). Statistika kvazimgnovennyh razrusheniy rezervuarov dlya hraneniya nefti i nefteproduktov. Pozharovzryvobezopasnost', 16 (6), 48–52. Available at: https://cyberleninka.ru/article/n/statistika-kvazimgnovennyh-razrusheniy-rezervuarov-dlya-hraneniya-nefti-i-nefteproduktov
  5. Prichiny razrusheniy i vzryvov rezervuarov. Available at: https://uralneftemash.com/blog/prichiny-razrushenij-i-vzryvov-rezervuarov/
  6. Kupreishvili, S. M. Razrusheniya v protsesse ekspluatatsii vertikal'nyh tsilindricheskih rezervuarov so statsionarnoy kryshey. Himstal'kon-Inzhiniring. Available at: https://www.himstalcon.ru/articles/razrusheniya-v-protsesse-ekspluatatsii-vertikalnyih-tsilindricheskih-rezervuarov-so-statsionarnoy-kryishey
  7. Lai, E., Zhao, J., Li, X., Hu, K., Chen, G. (2021). Dynamic responses and damage of storage tanks under the coupling effect of blast wave and fragment impact. Journal of Loss Prevention in the Process Industries, 73, 104617. doi: https://doi.org/10.1016/j.jlp.2021.104617
  8. Zhang, M., Zheng, F., Chen, F., Pan, W., Mo, S. (2019). Propagation probability of domino effect based on analysis of accident chain in storage tank area. Journal of Loss Prevention in the Process Industries, 62, 103962. doi: https://doi.org/10.1016/j.jlp.2019.103962
  9. Krentowski, J., Ziminski, K. (2019). Consequences of an incorrect assessment of a structure damaged by explosion. Engineering Failure Analysis, 101, 135–144. doi: https://doi.org/10.1016/j.engfailanal.2019.03.009
  10. Niloufari, A., Showkati, H., Maali, M., Mahdi Fatemi, S. (2014). Experimental investigation on the effect of geometric imperfections on the buckling and post-buckling behavior of steel tanks under hydrostatic pressure. Thin-Walled Structures, 74, 59–69. doi: https://doi.org/10.1016/j.tws.2013.09.005
  11. Defekty rezervuarov - klassifikatsiya i prichiny vozniknoveniy. Available at: https://zavod-volna.com/press/articles/defekty-rezervuarov/
  12. Safina, I. S., Kauzova, P. A., Guschin, D. A. (2016). Otsenka tekhnicheskogo sostoyaniya rezervuarov vertikal'nyh stal'nyh. Zhurnal "TekhNadzor", 3 (112). Available at: https://strategnk.ru/about/stati/statya1/statya1/
  13. Gaysina, D. R., Denisova, Ya. V. (2016). Analiz prichin avariynyh situatsiy na magistral'nyh truboprovodah. Vestnik tekhnologicheskogo universiteta, 19 (14), 129–130. Available at: https://www.elibrary.ru/item.asp?id=26555576
  14. Aydın Korucuk, F. M., Maali, M., Kılıç, M., Aydın, A. C. (2019). Experimental analysis of the effect of dent variation on the buckling capacity of thin-walled cylindrical shells. Thin-Walled Structures, 143, 106259. doi: https://doi.org/10.1016/j.tws.2019.106259
  15. Coramik, M., Ege, Y. (2017). Discontinuity inspection in pipelines: A comparison review. Measurement, 111, 359–373. doi: https://doi.org/10.1016/j.measurement.2017.07.058
  16. Bannikov, R. Yu., Smetannikov, О. Yu., Trufanov, N. A. (2014). Calculation of the amplitude of local conditional elastic stresses on the wall section tank with defects the form as a dent. Vestn. Samar. Gos. Tekhn. un-ta. Ser. Tekhnicheskie Nauki, 2 (42), 79–86. Available at: http://vestnik-teh.samgtu.ru/sites/vestnik-teh.samgtu.ru/files/auto/42_4_mashinostroenie_2014.pdf
  17. Dmitrieva, A. S., Lyagova, A. A. (2016). Problemy otsenki tekhnicheskogo sostoyaniya stal'nyh rezervuarov s defektom "vmyatina". Nauka i molodyozh' v XXI veke: materialy 2-y Vserossiyskoy nauchno-prakticheskoy konferentsii. Omsk: Omskiy gosudarstvennyy tekhnicheskiy universitet, 138–142. Available at: https://www.elibrary.ru/item.asp?id=28085497
  18. Maslak, M., Pazdanowski, M., Siudut, J., Tarsa, K. (2017). Corrosion Durability Estimation for Steel Shell of a Tank Used to Store Liquid Fuels. Procedia Engineering, 172, 723–730. doi: https://doi.org/10.1016/j.proeng.2017.02.092
  19. Kolesov, A. I., Ageeva, M. A. (2011). Residual life of steel storage tanks for chemical and petrochemical products, that have exhausted their standard operation time. Vestnik MGSU, 1/2011, 388–391. Available at: https://cyberleninka.ru/article/n/ostatochnyy-resurs-stalnyh-rezervuarov-himii-i-neftehimii-otrabotavshih-normativnye-sroki-ekspluatatsii-1
  20. Suleimenov, U., Zhangabay, N., Utelbayeva, A., Ibrahim, M. N. M., Moldagaliyev, A., Abshenov, K. et. al. (2021). Determining the features of oscillations in prestressed pipelines. Eastern-European Journal of Enterprise Technologies, 6 (7 (114)), 85–92. doi: https://doi.org/10.15587/1729-4061.2021.246751
  21. Zhang, D., Yang, L., Tan, Z., Xing, S., Bai, S., Wei, E. et. al. (2021). Corrosion behavior of X65 steel at different depths of pitting defects under local flow conditions. Experimental Thermal and Fluid Science, 124, 110333. doi: https://doi.org/10.1016/j.expthermflusci.2020.110333
  22. EN 1993-4-2:2007. Eurocode 3. Design of steel structures. Part 4-2. Tanks. Available at: https://www.gostinfo.ru/catalog/Details/?id=6108213
  23. RD-08-95-95. Polozheniya o sisteme tekhnicheskogo diagnostirovaniya svarnyh vertikal'nyh tsilindricheskih rezervuarov dlya nefti i nefteproduktov. Available at: https://docs.cntd.ru/document/1200003534
  24. SN RK 5.03-07-2013. Load-bearing and cladding structures. Available at: https://kbexpert.kz/wp-content/uploads/2021/07/СН-РК-5.03-07-2013-НЕСУЩИЕ-И-ОГРАЖДАЮЩИЕ-КОНСТРУКЦИИ-1.pdf
  25. Issledovanie prochnosti i dolgovechnosti vertikal'nyh tsilindricheskih rezervuarov dlya hraneniya mazuta na TETs s vmyatinami v stenke i razrabotka metodiki normirovaniya ih resursa i geometricheskih razmerov defektov. No. GR 0113RK00643. Available at: https://nauka.kz/page.php?page_id=371&id=30377
  26. Gol'denveyzer, A. L. (1976). Teoriya uprugih tonkih obolochek. Moscow: Nauka, 512. Available at: https://booksee.org/book/438714
  27. Biderman, V. L. (1977). Mekhanika tonkostennyh konstruktsiy. Moscow: Mashinostroenie, 487. Available at: https://obuchalka.org/20210818135423/mehanika-tonkostennih-konstrukcii-biderman-v-l-1977.html
  28. Tipovoy proekt 704-1-167.84. Rezervuar stal'noy vertikal'nyy tsilindricheskiy dlya nefti i nefteproduktov emkost'yu 2000 kub.m. Al'bom I. Konstruktsii metallicheskie rezervuara. Available at: http://gostrf.com/normadata/1/4293833/4293833208.pdf
  29. Yevdokimov, V. V., Trufanov, N. A., Smetannikov, O. Ju. (2006). Differential approach to permissible sizes of the dents on the wall surface of vertical cylindrical tanks. Promyshlennoe i grazhdanskoe stroitel'stvo, 6, 15–16. Available at: https://www.elibrary.ru/item.asp?id=9246645
  30. Aynabekov, A. I., Suleymenov, U. S., Omashova, G. Sh., Kambarov, M. A., Abshenov, H. A. (2014). Experimental estimate of the stress state of the space of the hollow of the wall of the standpipe. Vremya nauchnogo progressa: Sbornik nauchnyh trudov po materialam I Mezhdunarodnoy konferentsii. Volgograd, 9–15. Available at: https://www.elibrary.ru/item.asp?id=46452178

Downloads

Published

2022-02-28

How to Cite

Suleimenov, U., Zhangabay, N., Utelbayeva, A., Azmi Murad, M. A., Dosmakanbetova, A., Abshenov, K., Buganova, S., Moldagaliyev, A., Imanaliyev, K., & Duissenbekov, B. (2022). Estimation of the strength of vertical cylindrical liquid storage tanks with dents in the wall. Eastern-European Journal of Enterprise Technologies, 1(7(115), 6–20. https://doi.org/10.15587/1729-4061.2022.252599

Issue

Section

Applied mechanics