Estimation of the strength of vertical cylindrical liquid storage tanks with dents in the wall
DOI:
https://doi.org/10.15587/1729-4061.2022.252599Keywords:
steel tank, stress concentration, defects in the form of dents, dimensionless parameters of dents, numerical method, modelingAbstract
A multi-level mathematical model was used to estimate the stressed-strained state of a cylindrical reservoir with a defect in the wall shape in the form of a dent; the concentration of stresses in the defect zone was studied.
The proper choice of the mathematical model was verified; it has been shown that the engineering assessment of the stressed-strained state of the wall of a cylindrical tank with the variable thickness could employ ratios for a cylindrical shell with a constant wall thickness. The spread of values is 2‒10 %. This indicates the proper choice of the mathematical model, as well as the fact that it is possible, for an engineering assessment of the stressed-strained state of the wall of a cylindrical tank with variable thickness, to use the ratios for a cylindrical shell with a constant wall thickness.
The stressed-strained state of the dent zone in the tank wall was numerically estimated, which proved the assumption of significant stress concentrations in the dent zone and indicated the determining effect on the concentration of stresses in the dent zone exerted by its geometric dimensions and its depth in particular.
The concentration of stresses in the zone of dents in the tank wall was investigated in the ANSYS programming environment at different sizes of dents on the tank wall, for which two dimensionless parameters were introduced: the dimensionless radius of the dent and the dimensionless depth of the dent.
Based on the results of a numerical study into the stressed-strained state of the dent zone in the tank wall, graphic dependences were derived of the stress concentration coefficient on the dimensionless depth of the dent for various values of the dimensionless radius of dents, which does not exceed 2 % of the indicator.
Based on fitting the stress concentration curves on the dimensions of the dent and tank, a formula was derived for calculating the stress concentration coefficient as a function of the dimensionless radius ξ and the dimensionless depth ς of the dent. The resulting formula makes it possible, with known dimensionless parameters of the depth and radius of the dent, to determine the coefficients of stress concentration in the dented zone of the tank wall.
References
- Rahmatulina, G. (2012). Rynok nefteproduktov Kazahstana v ramkah tamozhennogo soyuza: Perspektivy razvitiya. Vestnik Instituta ekonomiki Rossiyskoy akademii nauk, 2/2012, 143–154. Available at: https://cyberleninka.ru/article/n/rynok-nefteproduktov-kazahstana-v-ramkah-tamozhennogo-soyuza-perspektivy-razvitiya
- Analiz rynka uslug hraneniya i skladirovaniya nefti i produktov ee pererabotki. Available at: https://gidmark.ru/cat1/analiz-rynka-uslug-hraneniya-i-skladirovaniya-nefti-i-produktov-ee-pererabotki
- Analiz rynka nefteproduktov v Kazahstane - 2021. Pokazateli i prognozy. Available at: https://tebiz.ru/mi/analiz-rynka-nefteproduktov-v-kazakhstane
- Shvyrkov, S. A., Goryachev, S. A., Sorokoumov, V. P., Batmanov, S. V., Vorob'yov, V. V. (2007). Statistika kvazimgnovennyh razrusheniy rezervuarov dlya hraneniya nefti i nefteproduktov. Pozharovzryvobezopasnost', 16 (6), 48–52. Available at: https://cyberleninka.ru/article/n/statistika-kvazimgnovennyh-razrusheniy-rezervuarov-dlya-hraneniya-nefti-i-nefteproduktov
- Prichiny razrusheniy i vzryvov rezervuarov. Available at: https://uralneftemash.com/blog/prichiny-razrushenij-i-vzryvov-rezervuarov/
- Kupreishvili, S. M. Razrusheniya v protsesse ekspluatatsii vertikal'nyh tsilindricheskih rezervuarov so statsionarnoy kryshey. Himstal'kon-Inzhiniring. Available at: https://www.himstalcon.ru/articles/razrusheniya-v-protsesse-ekspluatatsii-vertikalnyih-tsilindricheskih-rezervuarov-so-statsionarnoy-kryishey
- Lai, E., Zhao, J., Li, X., Hu, K., Chen, G. (2021). Dynamic responses and damage of storage tanks under the coupling effect of blast wave and fragment impact. Journal of Loss Prevention in the Process Industries, 73, 104617. doi: https://doi.org/10.1016/j.jlp.2021.104617
- Zhang, M., Zheng, F., Chen, F., Pan, W., Mo, S. (2019). Propagation probability of domino effect based on analysis of accident chain in storage tank area. Journal of Loss Prevention in the Process Industries, 62, 103962. doi: https://doi.org/10.1016/j.jlp.2019.103962
- Krentowski, J., Ziminski, K. (2019). Consequences of an incorrect assessment of a structure damaged by explosion. Engineering Failure Analysis, 101, 135–144. doi: https://doi.org/10.1016/j.engfailanal.2019.03.009
- Niloufari, A., Showkati, H., Maali, M., Mahdi Fatemi, S. (2014). Experimental investigation on the effect of geometric imperfections on the buckling and post-buckling behavior of steel tanks under hydrostatic pressure. Thin-Walled Structures, 74, 59–69. doi: https://doi.org/10.1016/j.tws.2013.09.005
- Defekty rezervuarov - klassifikatsiya i prichiny vozniknoveniy. Available at: https://zavod-volna.com/press/articles/defekty-rezervuarov/
- Safina, I. S., Kauzova, P. A., Guschin, D. A. (2016). Otsenka tekhnicheskogo sostoyaniya rezervuarov vertikal'nyh stal'nyh. Zhurnal "TekhNadzor", 3 (112). Available at: https://strategnk.ru/about/stati/statya1/statya1/
- Gaysina, D. R., Denisova, Ya. V. (2016). Analiz prichin avariynyh situatsiy na magistral'nyh truboprovodah. Vestnik tekhnologicheskogo universiteta, 19 (14), 129–130. Available at: https://www.elibrary.ru/item.asp?id=26555576
- Aydın Korucuk, F. M., Maali, M., Kılıç, M., Aydın, A. C. (2019). Experimental analysis of the effect of dent variation on the buckling capacity of thin-walled cylindrical shells. Thin-Walled Structures, 143, 106259. doi: https://doi.org/10.1016/j.tws.2019.106259
- Coramik, M., Ege, Y. (2017). Discontinuity inspection in pipelines: A comparison review. Measurement, 111, 359–373. doi: https://doi.org/10.1016/j.measurement.2017.07.058
- Bannikov, R. Yu., Smetannikov, О. Yu., Trufanov, N. A. (2014). Calculation of the amplitude of local conditional elastic stresses on the wall section tank with defects the form as a dent. Vestn. Samar. Gos. Tekhn. un-ta. Ser. Tekhnicheskie Nauki, 2 (42), 79–86. Available at: http://vestnik-teh.samgtu.ru/sites/vestnik-teh.samgtu.ru/files/auto/42_4_mashinostroenie_2014.pdf
- Dmitrieva, A. S., Lyagova, A. A. (2016). Problemy otsenki tekhnicheskogo sostoyaniya stal'nyh rezervuarov s defektom "vmyatina". Nauka i molodyozh' v XXI veke: materialy 2-y Vserossiyskoy nauchno-prakticheskoy konferentsii. Omsk: Omskiy gosudarstvennyy tekhnicheskiy universitet, 138–142. Available at: https://www.elibrary.ru/item.asp?id=28085497
- Maslak, M., Pazdanowski, M., Siudut, J., Tarsa, K. (2017). Corrosion Durability Estimation for Steel Shell of a Tank Used to Store Liquid Fuels. Procedia Engineering, 172, 723–730. doi: https://doi.org/10.1016/j.proeng.2017.02.092
- Kolesov, A. I., Ageeva, M. A. (2011). Residual life of steel storage tanks for chemical and petrochemical products, that have exhausted their standard operation time. Vestnik MGSU, 1/2011, 388–391. Available at: https://cyberleninka.ru/article/n/ostatochnyy-resurs-stalnyh-rezervuarov-himii-i-neftehimii-otrabotavshih-normativnye-sroki-ekspluatatsii-1
- Suleimenov, U., Zhangabay, N., Utelbayeva, A., Ibrahim, M. N. M., Moldagaliyev, A., Abshenov, K. et. al. (2021). Determining the features of oscillations in prestressed pipelines. Eastern-European Journal of Enterprise Technologies, 6 (7 (114)), 85–92. doi: https://doi.org/10.15587/1729-4061.2021.246751
- Zhang, D., Yang, L., Tan, Z., Xing, S., Bai, S., Wei, E. et. al. (2021). Corrosion behavior of X65 steel at different depths of pitting defects under local flow conditions. Experimental Thermal and Fluid Science, 124, 110333. doi: https://doi.org/10.1016/j.expthermflusci.2020.110333
- EN 1993-4-2:2007. Eurocode 3. Design of steel structures. Part 4-2. Tanks. Available at: https://www.gostinfo.ru/catalog/Details/?id=6108213
- RD-08-95-95. Polozheniya o sisteme tekhnicheskogo diagnostirovaniya svarnyh vertikal'nyh tsilindricheskih rezervuarov dlya nefti i nefteproduktov. Available at: https://docs.cntd.ru/document/1200003534
- SN RK 5.03-07-2013. Load-bearing and cladding structures. Available at: https://kbexpert.kz/wp-content/uploads/2021/07/СН-РК-5.03-07-2013-НЕСУЩИЕ-И-ОГРАЖДАЮЩИЕ-КОНСТРУКЦИИ-1.pdf
- Issledovanie prochnosti i dolgovechnosti vertikal'nyh tsilindricheskih rezervuarov dlya hraneniya mazuta na TETs s vmyatinami v stenke i razrabotka metodiki normirovaniya ih resursa i geometricheskih razmerov defektov. No. GR 0113RK00643. Available at: https://nauka.kz/page.php?page_id=371&id=30377
- Gol'denveyzer, A. L. (1976). Teoriya uprugih tonkih obolochek. Moscow: Nauka, 512. Available at: https://booksee.org/book/438714
- Biderman, V. L. (1977). Mekhanika tonkostennyh konstruktsiy. Moscow: Mashinostroenie, 487. Available at: https://obuchalka.org/20210818135423/mehanika-tonkostennih-konstrukcii-biderman-v-l-1977.html
- Tipovoy proekt 704-1-167.84. Rezervuar stal'noy vertikal'nyy tsilindricheskiy dlya nefti i nefteproduktov emkost'yu 2000 kub.m. Al'bom I. Konstruktsii metallicheskie rezervuara. Available at: http://gostrf.com/normadata/1/4293833/4293833208.pdf
- Yevdokimov, V. V., Trufanov, N. A., Smetannikov, O. Ju. (2006). Differential approach to permissible sizes of the dents on the wall surface of vertical cylindrical tanks. Promyshlennoe i grazhdanskoe stroitel'stvo, 6, 15–16. Available at: https://www.elibrary.ru/item.asp?id=9246645
- Aynabekov, A. I., Suleymenov, U. S., Omashova, G. Sh., Kambarov, M. A., Abshenov, H. A. (2014). Experimental estimate of the stress state of the space of the hollow of the wall of the standpipe. Vremya nauchnogo progressa: Sbornik nauchnyh trudov po materialam I Mezhdunarodnoy konferentsii. Volgograd, 9–15. Available at: https://www.elibrary.ru/item.asp?id=46452178
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ulanbator Suleimenov, Nurlan Zhangabay, Akmaral Utelbayeva, Masrah Azrifan Azmi Murad, Aibarsha Dosmakanbetova, Khassen Abshenov, Svetlana Buganova, Arman Moldagaliyev, Kuanysh Imanaliyev, Bolat Duissenbekov
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.