Improving the efficiency of an aircraft power plant with a turboprop engine based on water-methanol mixture injection

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.254277

Keywords:

turboprop engine, boosting, performance characteristics, water, mathematical model, harmful emissions

Abstract

This paper considers a technique for modernizing the power plant (PP) of a regional aircraft. The modernization is based on the injection of water or a water-methanol mixture into the compressor or combustion chamber of a turboprop engine (TPE). An algorithm has been developed for the thermodynamic calculation of TPE parameters, taking into consideration the injected mixture; the mathematical model (MM) has been improved. Methodical studies of the operability and range of application of the improved MM were carried out. The results of mathematical modeling were validated. For verification, the AI-450M turboshaft engine produced by GP Ivchenko-Progress (Ukraine) was used as an object of research. Based on the improved MM, a software module has been developed to study the performance characteristics of a regional aircraft with a TPE. The influence of water injection and a water-methanol mixture on the TPE operating process and the operational characteristics of a regional passenger aircraft has been studied.

The proposed measures could be implemented in existing TPEs. This would allow the operation of aircraft without significant modernization of the airport infrastructure. For TPE, the injection of water and a water-methanol mixture is an alternative way of boosting in order to temporarily improve performance. A given modernization technique could improve the TPE power up to ~10 %, as well as reduce the amount of harmful emissions.

The results obtained showed a satisfactory convergence of estimated and experimental data. The error of the results under the accepted assumptions does not exceed 3 %. The calculation results demonstrate the advantages of injection at the take-off stage of the aircraft to reduce the take-off distance (up to 45 % in hot conditions TAMB=+30 °C) and reduce the time of climbing the echelon (~10 %)

Author Biographies

Yurii Ulitenko, State Enterprise "Ivchenko-Progress"

PhD

Department of Advanced Development and Gas Dynamic Calculations

Vasyl Loginov, National Aerospace University “Kharkiv Aviation Institute”

Doctor of Technical Sciences, Professor

Department of Aircraft Engine Design

Igor Kravchenko, State Enterprise "Ivchenko-Progress"

Doctor of Technical Sciences, Associate Professor, Director of the Enterprise

Viktor Popov, Private Joint-Stock Company "FED"

Doctor of Technical Sciences, Chairman of the Board

Oleksandr Rasstrygin, Central Scientific Research Institute of Armament and Military Equipment of the Armed Forces of Ukraine

Doctor of Technical Sciences, Professor

Research Department No. 5

Olexandr Yelans'ky, State Enterprise "Ivchenko-Progress"

PhD

Department of Advanced Development and Gas Dynamic Calculations

References

  1. Daggett, D., Fucke, L., Hendricks, R., Eames, D. (2004). Water Injection of Commercial Aircraft to Reduce Airport Emissions. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. doi: https://doi.org/10.2514/6.2004-4198
  2. Liu, C., Li, X., Zhang, H., Zheng, Q. (2017). Heat and Mass Transfer Characteristics of Water Droplets in Wet Compression Process. Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration Applications; Organic Rankine Cycle Power Systems. doi: https://doi.org/10.1115/gt2017-63516
  3. Wang, T., Khan, J. R. (2010). Overspray and Interstage Fog Cooling in Gas Turbine Compressor Using Stage-Stacking Scheme—Part I: Development of Theory and Algorithm. Journal of Thermal Science and Engineering Applications, 2 (3). doi: https://doi.org/10.1115/1.4002754
  4. Wang, T., Khan, J. R. (2010). Overspray and Interstage Fog Cooling in Gas Turbine Compressor Using Stage-Stacking Scheme—Part II: Case Study. Journal of Thermal Science and Engineering Applications, 2 (3). doi: https://doi.org/10.1115/1.4002755
  5. Tudosie, A.-N. (2014). Mathematical model for a jet engine with cooling fluid injection into its compressor. Proceedings of International Conference of Scientific Papers (AFASES 2014). Available at: https://www.afahc.ro/ro/afases/2014/mecanica/Tudosie_compresor.pdf
  6. Tudosie, A.-N. (2014). Mathematical model for a jet engine with cooling fluid injection into its combustor. Proceedings of International Conference of Scientific Papers (AFASES 2014). Available at: https://www.afahc.ro/ro/afases/2014/mecanica/Tudosie_combustor.pdf
  7. Tudosie, A. N. (2018). Aircraft Gas-Turbine Engine with Coolant Injection for Effective Thrust Augmentation as Controlled Object. Aircraft Technology. doi: https://doi.org/10.5772/intechopen.76856
  8. Sun, L., Sun, T., Wang, Y., Yang, W. (2016). Numerical Simulation of Pollutant Emission of a Turbojet Engine With Water Injection. Volume 1: Aircraft Engine; Fans and Blowers; Marine. doi: https://doi.org/10.1115/gt2016-57074
  9. Mourouzidis, C., Igie, U., Pilidis, P., Singh, R. (2015). Water injection on aircraft engines: a performance, emissions and economic study. In: ISABE 22nd International Symposium on Air Breathing Engines 2015 Phoenix. Available at: https://dspace.lib.cranfield.ac.uk/handle/1826/15176
  10. Naegeli, D. W., Yost, D. M., Owens, E. C. (1984). Engine Wear With Methanol Fuel in a Nitrogen-Free Environnment. SAE Technical Paper Series. doi: https://doi.org/10.4271/841374
  11. Breda, S., Berni, F., d’ Adamo, A., Testa, F., Severi, E., Cantore, G. (2015). Effects on Knock Intensity and Specific Fuel Consumption of Port Water/Methanol Injection in a Turbocharged GDI Engine: Comparative Analysis. Energy Procedia, 82, 96–102. doi: https://doi.org/10.1016/j.egypro.2015.11.888
  12. Favorskii, O. N., Alekseev, V. B., Zalkind, V. I., Zeigarnik, Y. A., Ivanov, P. P., Marinichev, D. V. et. al. (2014). Experimentally studying TV3-117 gas-turbine unit characteristics at superheated water injection into a compressor. Thermal Engineering, 61 (5), 376–384. doi: https://doi.org/10.1134/s0040601514050024
  13. Egorov, I. N., Kretinin, G. V., Leschenko, I. A. (1988). Osobennosti matematicheskogo modelirovaniya aviatsionnykh GTD. Moscow: VVIA im. prof. N. E. Zhukovskogo, 177.
  14. Nechaev, Yu. N., Fedorov, R. M. (1977). Teoriya aviatsionnykh gazoturbinnykh dvigateley. Ch. 1. Moscow: Mashinostroenie, 312.
  15. Shlyakhtenko, S. M. (1975). Teoriya vozdushno-reaktivnykh dvigateley. Moscow: Mashinostroenie, 567.
  16. Barten'ev, O. V. (2000). Sovremenniy Fortran. Moscow: Dialog Mifi, 450. Available at: https://docplayer.com/408341-O-v-bartenev-sovremennyy-fortran-izdanie-trete-dopolnennoe-i-pererabotannoe.html
  17. Kozyrev, A. M., Butov, L. A. (1993). Matematicheskoe modelirovanie rabochego protsessa aviatsionnykh dvigateley. Moscow: VVIA im. prof. N. E. Zhukovskogo, 144.
  18. Dubovkin, N. F. (1962). Spravochnik po uglevodorodnym toplivam i ikh produktam sgoraniya. Moscow: Gosudarstvennoe energeticheskoe izdatel'stvo, 288.
  19. Glushko, V. P. (1971). Termodinamicheskie i teplofizicheskie svoystva produktov sgoraniya. Vol. 1. Metody rascheta. Moscow: izdatel'stvo AN SSSR, 497.
  20. Glushko, V. P. (1978). Termodinamicheskie svoystva individual'nykh veschestv. Vol. 4. Moscow: "Nauka", 559.
  21. Kirichkov, M. A., Yelansky, A. V., Kravchenko, I. F. (2013). Developing a small-size family of gas turbine engine based on single core. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 10, 37–41. Available at: http://nti.khai.edu:57772/csp/nauchportal/Arhiv/AKTT/2013/AKTT1013/Kirichk.pdf
  22. Proverka rabotosposobnosti dvigatelya AI-450M (AI-450M1) pri imitatsii popadaniya v nego dozhdya. Tekhnicheskiy otchet, T/o No. 114/2012-450M, GP «Ivchenko-Progress» (2012). Zaporozh'e.
  23. Otsenka sistemy vpryska vody dvigatelya AI-450M. Tekhnicheskiy otchet, T/o No. 570/2018-450M, GP «Ivchenko-Progress» (2018). Zaporozh'e.
  24. Tekhnicheskoe zadanie na razrabotku sistemy vpryska vody v turboval'nyy dvigatel' AI-450M. Tekhnicheskoe zadanie, No. 450M-TZ-9, GP «Ivchenko-Progress» (2018). Zaporozh'e.
  25. Rivkin, S. L. (1984). Termodinamicheskie svoystva vozdukha i produktov sgoraniya. Moscow: Energoatomizdat, 104.
  26. Tekhnicheskoe zadanie na rabochee proektirovanie turbovintovogo dvigatelya AI-450C. Tekhnicheskoe zadanie, 4510000000 TZ, GP «Ivchenko-Progress» (2013). Zaporozh'e.
  27. Guide to Meteorological Instruments and Methods of Observation (2008). World Meteorological Organization. Available at: https://www.posmet.ufv.br/wp-content/uploads/2016/09/MET-474-WMO-Guide.pdf
  28. Sheynin, V. M., Kozlovskiy, V. I. (1984). Vesovoe proektirovanie i effektivnost' passazhirskikh samoletov. Vol. 1. Moscow: Mashinostroenie, 551.

Downloads

Published

2022-04-28

How to Cite

Ulitenko, Y., Loginov, V., Kravchenko, I., Popov, V., Rasstrygin, O., & Yelans’ky, O. (2022). Improving the efficiency of an aircraft power plant with a turboprop engine based on water-methanol mixture injection. Eastern-European Journal of Enterprise Technologies, 2(1 (116), 6–15. https://doi.org/10.15587/1729-4061.2022.254277

Issue

Section

Engineering technological systems