Influence of pre-treatment of flax fibers on cellulose properties

Authors

  • Валерій Анатолійович Барбаш National Technical University Ukraine “Kyiv Polytechnic Institute” Avenue Pobedy, 37, Kyiv, Ukraine, 03057, Ukraine https://orcid.org/0000-0002-7933-6038
  • Юлія Миколаївна Нагорна National Technical University Ukraine “Kyiv Polytechnic Institute” Avenue Pobedy, 37, Kyiv, Ukraine, 03057, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.25934

Keywords:

alkaline treatment, acid treatment, flax fiber, delignification, sulfate ash

Abstract

The influence of the main process parameters (temperature, duration, irrigation modulus, catalyst content) alkaline and acid treatment of flax fibers on the quality parameters of the obtained pulp was investigated. The effect of various chemical agents on removing non-cellulose components of flax fibers, in particular minerals, was studied. It was found that during alkaline treatment of the flax fibers sodium hydroxide better removed lignin and minerals than potassium hydroxide and hydrous ammonia.

For the production of microcrystalline cellulose of flax fibers, it is recommended to carry out alkaline treatment at the concentration of sodium hydroxide in 20-25 % solution at the temperature of 160 0С for 180 minutes.

The preliminary stage of acid hydrolysis of flax fibers is recommended to be carried out with a sulfuric acid concentration of 1 % at 100 0С for 180 minutes.

Author Biographies

Валерій Анатолійович Барбаш, National Technical University Ukraine “Kyiv Polytechnic Institute” Avenue Pobedy, 37, Kyiv, Ukraine, 03057

PhD, Associate professor

Department of ecology and plant polymer technologies

Юлія Миколаївна Нагорна, National Technical University Ukraine “Kyiv Polytechnic Institute” Avenue Pobedy, 37, Kyiv, Ukraine, 03057

Graduate student

Department of ecology and plant polymer technologies

References

  1. Habibi, Y., Lucia, L. A., Rojas, O. J. (2010). Cellulose Nanocrystals Cmemistry, Self-Assembly, and Applications. Chem.Rev., 110, 3479–3500.
  2. Kai, Y., Hamada, J., Morioka, M., Todaka, T., Hasegawa, S., Ushio, Y. (2000). The utility of the microcrystalline cellulose sphere as a particulate embolic agent: an experimental study. American Journal of Neuroradiology, Vol. 21, № 6, 1160–1163.
  3. Jaenhwan, K., Sungryul, Y. (2006). Discovery of Cellulose as a Smart Material. Macromolecules, 39, 4202-4206.
  4. Sarymsakov, A. A., Baltaeva, M. N., Nabyev, D. S., Rashidova, S. S., Yugay, G. M. (2004). Dysperhyrovannaya microcrystalline cellulose and Hydrogel Bases. Chemistry rastytelnoho raw materials, № 2, 11-16.
  5. State Statistics Committee of Ukraine. Access: http://uga-port.org.ua/sites/default/files/bl_posiv_2013.pdf.
  6. Nepenyn, U. N. (1990). Tehnologiya cellulosi: in 3 volumes. V.2. Production sulfatnoy cellulosi. Textbook for high schools. - 2nd ed., Rev. -M.: Lesnaya promishlennost, 600.
  7. Hu, F. (2012). Pretreatment and lignocellulosic chemistry. Bioenergy resources, № 5, 1043-1066.
  8. Denisovа, M. N., Mitrofanov, R., Budaeva, V. V., Arkhipova, D. C. (2010). Cellulose and lignin, which are obtained by the hydrotropic method from miscanthus. Polzunovskii Journal, № 4, 198-206.
  9. Barbash, V. A. (2014). Мicrocrystalline cellulose from bast fibers plants. Scientific news "KPI”, № 1, 117-122.
  10. Barbash, V. A., Danylenko, A. A., Nagorna, Y. М. (2013). Investigation of the effect of different stages of the process of obtaining microcrystalline cellulose fibers from hemp for its quality. Scientific news "KPI", № 2, 147-151.
  11. Rуlskyy, A. U., Lebedev, V. A., Marchenko, A. N., Pynytsa, A. P. (2007) Linen cellulose - cotton alternative papermaking. Cardboard and Corrugated cardboard,38-39.
  12. Artemyev, A.V., Ruzhytskyy, A. A. (2004). Organic substances of Bast Crops. Journal Hosudarstvennoho himicheskogo society im. D. I. Mendeleev, XVVIII, № 3, 55-62.
  13. Perepelkin, K. E. (1985). Structure and properties of fibers. - Moscow: Chemistry, 280 p.
  14. Barbash, V. A., Тrembus, I. V., Shevchenko, V. М. (2014). Ammonia-sulfite-ethanol pulp from wheat straw. Сellulose chemistry and technology, 48, 345-353.
  15. Yin, H. C., Soo, H. N., Cheu, P. L. (2013). Improved oxygen delignification selectivity of oil palm (elaeis guineensis) efb soda-aq pulp: effect of photo-pretreatment and aq-aided h2o2 reinforcement. Cellulose Сhemistry and Technology, 47, 277-283.
  16. Huhnyn, M. Y., Malkov, Y. A., Nepenyn, Y. N. (1983). On the mechanism of action of anthraquinone in alkaline cooking. Chemistry of wood, № 3, 43-46.
  17. Kryukov, V. M. (1980). Investigation of the possibility of intensifying the process of alkaline pulping of hardwood pulp - Moscow: Lesnaya industry, 150 p.

Published

2014-08-08

How to Cite

Барбаш, В. А., & Нагорна, Ю. М. (2014). Influence of pre-treatment of flax fibers on cellulose properties. Eastern-European Journal of Enterprise Technologies, 4(6(70), 4–8. https://doi.org/10.15587/1729-4061.2014.25934

Issue

Section

Technology organic and inorganic substances