Application of mathematical methods and machine learning algorithms for classification of X-ray images

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.259710

Keywords:

mathematical methods, machine learning, neural networks, pattern recognition, medical image processing, artificial intelligence

Abstract

The relevance of the topic, in particular, if to take one of the information flows, whether it is the action of a human factor or a specific object, then it is true that special processing of the machine learning language and automatic information output significantly optimize human life. With the help of neural networks and their chest radiography is one of the most accessible radiological studies for screening and diagnosis of many lung diseases a special machine learning language is to study the flow of information about it and the same object in real time using neural networks.

The article describes the terminology of the problem of X-ray recognition using machine learning methods and algorithms, examines the relevance of the problem, and analyzes the current state of the problem in the field of X-ray recognition. The aspects of the problem being solved, identified during the analysis, in the form of solved problems, approaches, methods, information technologies used, tools and software solutions to the problem are noted

The paper is devoted to the description of a modified method of fuzzy clustering of halftone images, which at each iteration performs a dynamic transformation of the source data based on a singular decomposition with automatic selection of the most significant columns of the matrix of left singular vectors. The results of experimental studies were obtained by processing X-ray images.

As a result of testing a neural network model, in the output layer of which a sigmoidal activation function was used to activate neurons, and an algorithm was used as an optimization method, the best values of accuracy and completeness were obtained: accuracy – 94.2 During testing, the neural network showed an accuracy of pneumonia recognition equal to 94,27 %

Supporting Agency

  • Scientific supervisor Gulzira Abdikerimova and doctoral student Shekerbek Ainur express their gratitude for the guidance on the topic of their scientific work.

Author Biographies

Ainur Shekerbek, L. N. Gumilyov Eurasian National University

Doctoral Student

Department of Information Systems

Sandugash Serikbayeva, L. N. Gumilyov Eurasian National University

Doctor of Philosophy (PhD)

Department of Information Systems

Murat Tulenbayev, M. Kh. Dulaty Taraz Regional University

Doctor of Technical Sciences, Professor of Computer Science

Department of Information Systems

Galitdin Bakanov, Khoja Akhmet Yassawi International Kazakh-Turkish University

Doctor of Physical-Mathematical Science

Department of Mathematics

Svetlana Beglerova, M. Kh. Dulaty Taraz Regional University

Candidate of Technical Science

Department of Information Systems

Anastassiya Makovetskaya, M. Kh. Dulaty Taraz Regional University

Master of Science

Department of Information Systems

References

  1. Ibrahim, I., Abdulazeez, A. (2021). The Role of Machine Learning Algorithms for Diagnosing Diseases. Journal of Applied Science and Technology Trends, 2 (01), 10–19. doi: https://doi.org/10.38094/jastt20179
  2. Ziyazetdinova, L. Yu. (2021). Analiz sostoyaniya issledovaniy v oblasti raspoznavaniya rentgenovskikh i kt snimkov s pomosch'yu metodov glubokogo mashinnogo obucheniya. Mavlyutovskie chteniyamaterialy XV Vserossiyskoy molodezhnoy nauchnoy konferentsii. Ufa, 235–245.
  3. Pechnikov, A. A., Bogdanov, N. A. (2021). Comparison of two approaches to the recognition of pneumonia by X-rays. Petrozavodsk, 90–91. Available at: https://www.researchgate.net/profile/Surovtsova-Tatyana-2/publication/357340485_Development_of_evaluation_criteria_for_a_creative_programming_competition/links/61c98658d4500608166e8156/Development-of-evaluation-criteria-for-a-creative-programming-competition.pdf
  4. Vasilchenko, V. A., Burkovskiy, V. L., Danilov, A. D. (2019). Algorithmization of the process of recognition of states of living objects based on special x-ray images. Computer Optics, 43 (2), 296–303. doi: https://doi.org/10.18287/2412-6179-2017-43-2-296-303
  5. Sludnova, A. A., Shutko, V. V., Gaidel, A. V., Zelter, P. M., Kapishnikov, A. V., Nikonorov, A. V. (2021). Identification of pathological changes in the lungs using an analysis of radiological reports and tomographic images. Computer Optics, 45 (2), 261–266. doi: https://doi.org/10.18287/2412-6179-co-793
  6. Hrytsai, А. S., Levitskaya, T. A. (2019). Intelligent system for detecting anomalies in X-ray images using deep learning methods. Visnyk of Kherson National Technical University, 3 (70), 97–102. doi: https://doi.org/10.35546/kntu2078-4481.2019.3.10
  7. Gorelov, I. A., Nemtinov, V. A. (2016). Application of computer vision technology in search of pathologies on X-ray images of chest. Wschodnioeuropejskie Czasopismo Naukowe, 7, 6–13. Available at: https://cyberleninka.ru/article/n/primenenie-tehnologiy-kompyuternogo-zreniya-pri-poiske-patologiy-na-rentgenogrammah-organov-grudnoy-kletki
  8. Kuznetsov, N. A. (2020). Primenenie neyronnykh setey dlya diagnostiki zabolevaniy. Inzhenernye i informatsionnye tekhnologii, ekonomika i menedzhment v promyshlennosti: Sbornik nauchnykh statey po itogam vtoroy mezhdunarodnoy nauchnoy konferentsii. Volgograd: Obschestvo s ogranichennoy otvetstvennost'yu "KONVERT", 240–242.
  9. Meldo, A. A., Utkin, L. V., Moiseyenko, V. M. (2018). XXI century diagnostic algorithms. Artifitial intelligance in lung cancer detection. Practical Oncology, 19 (3), 292–298. doi: https://doi.org/10.31917/1903292
  10. Minyazev, R. Sh., Rumyantsev, A. A., Dyganov, S. A., Baev, A. A. (2018). Analiz rentgenovskikh izobrazheniy dlya vyyavleniya patologiy s ispol'zovaniem neyronnykh setey. Izvestiya Rossiyskoy Akademii Nauk. Seriya Fizicheskaya, 82 (12), 1685–1688. doi: https://doi.org/10.1134/s036767651812013x
  11. Maurya, L., Mahapatra, P. K., Kumar, A. (2017). A social spider optimized image fusion approach for contrast enhancement and brightness preservation. Applied Soft Computing, 52, 575–592. doi: https://doi.org/10.1016/j.asoc.2016.10.012
  12. Kim, S. E., Jeon, J. J., Eom, I. K. (2016). Image contrast enhancement using entropy scaling in wavelet domain. Signal Processing, 127, 1–11. doi: https://doi.org/10.1016/j.sigpro.2016.02.016
  13. Lidong, H., Wei, Z., Jun, W., Zebin, S. (2015). Combination of contrast limited adaptive histogram equalisation and discrete wavelet transform for image enhancement. IET Image Processing, 9 (10), 908–915. doi: https://doi.org/10.1049/iet-ipr.2015.0150
  14. Tiwari, M., Gupta, B., Shrivastava, M. (2015). High‐speed quantile‐based histogram equalisation for brightness preservation and contrast enhancement. IET Image Processing, 9 (1), 80–89. doi: https://doi.org/10.1049/iet-ipr.2013.0778
  15. Wei, Z., Lidong, H., Jun, W., Zebin, S. (2015). Entropy maximisation histogram modification scheme for image enhancement. IET Image Processing, 9 (3), 226–235. doi: https://doi.org/10.1049/iet-ipr.2014.0347
  16. Gonsales, R., Vuds, R., Eddins, S. (2006). Tsifrovaya obrabotka izobrazheniy v srede Matlab. Moscow: Tekhnosfera, 616. Available at: https://en.sng1lib.org/book/2075428/0968c1

Downloads

Published

2022-06-30

How to Cite

Shekerbek, A., Serikbayeva, S., Tulenbayev, M., Bakanov, G., Beglerova, S., & Makovetskaya, A. (2022). Application of mathematical methods and machine learning algorithms for classification of X-ray images . Eastern-European Journal of Enterprise Technologies, 3(2 (117), 6–17. https://doi.org/10.15587/1729-4061.2022.259710