Development of technology for obtaining coal-water fuel

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.259734

Keywords:

coal-water suspension, electrohydraulic effect, coal sludge, plasticizer

Abstract

The object of the study is coal sludge and coal fines of the Shubarkol deposit and the Kuznetsk coal basin (Republic of Kazakhstan) for the production of coal-water fuel, which allows replacing liquid and gaseous expensive products. The resulting fuel (after treatment of coal seams and burial) from industrial waste should not harm the environment, which requires certain economic investments. For crushing coal and coal sludge in the crushing and grinding unit, an electrohydroimpulse device for fine grinding of materials was used, consisting of a control unit with a protection system, a pulse capacitor and a high-voltage generator (capacitor bank capacity 0.75 µF, pulse discharge voltage 15–30 kV, length of the interelectrode distance 7–10 mm). After grinding, fine coal particles rise to the surface of the water, and impurities settle at the bottom of the device, which allows enriching the product (flotation). Surface structures and coal fraction sizes were obtained using a Tescan Mira 3 scanning electron microscope. The main characteristics of coal-water fuel during vortex combustion were: the diameter of the fraction 0–250 microns – 63–74 %, process water – 36–24 %, special additive – 1–2 %. Coal-water fuel is similar to liquid fuel, and when transferring heat-generating plants to combustion of suspension, no significant changes in the design of boilers (units) are required. This makes it easy to mechanize and automate the processes of receiving, feeding and burning fuel, and the vortex combustion technology at a temperature of 950–1050 °C guarantees fuel efficiency of more than 97 %. The given optimal parameters of electrohydroimpulse technology when introduced into production will allow not only grinding, but also enriching the coal product

Supporting Agency

  • Some materials of this work were obtained and funded within the framework of the grant of the Ministry of Education and Science of the Republic of Kazakhstan

Author Biographies

Bekbolat Nussupbekov, Karaganda Buketov University

Candidate of Technical Sciences Science, Professor

Department of Engineering Thermophysics named after Professor Zh.S.Akylbayev

Ayanbergen Khassenov, Karaganda Buketov University

Doctor of Philosophy (PhD)

Department of Engineering Thermophysics named after Professor Zh.S.Akylbayev

Ulan Nussupbekov, Karaganda Buketov University

Doctoral Student

Faculty of Physics and Technology

Bektursin Akhmadiyev, Karaganda Buketov University

Master of Physical Sciences

Alternative Energy Research Center

Dana Karabekova, Karaganda Buketov University

Doctor of Philosophy (PhD)

Department of Engineering Thermophysics named after Professor Zh.S.Akylbayev

Bayan Kutum, Karaganda Buketov University

Master of Physical Sciences

Alternative Energy Research Center

Nazgul Tanasheva, Karaganda Buketov University

Doctor of Philosophy (PhD)

Alternative Energy Research Center

References

  1. Davidsson, S., Grandell, L., Wachtmeister, H., Höök, M. (2014). Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy. Energy Policy, 73, 767–776. doi: https://doi.org/10.1016/j.enpol.2014.05.003
  2. Dolinskiy, A. A., Khalatova, A. (2007). Vodougol'noe toplivo: perspektivy ispol'zovaniya v teploenergetike i zhilischno-kommunal'nom sektore. Prom. Teplotekhnika, 29 (5) 70–79. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/61288/11-Dolinsky.pdf?sequence=1
  3. Kuznetsov, G. V., Salomatov, V. V., Syrodoy, S. V. (2015). Numerical simulation of ignition of particles of a coal–water fuel. Combustion, Explosion, and Shock Waves, 51 (4), 409–415. doi: https://doi.org/10.1134/s0010508215040024
  4. Murko, V. I., Kulagin, V. A., Baranova, M. P. (2017). Obtaining Stable Binary Fuel Systems. Journal of Siberian Federal University. Engineering & Technologies, 10 (8), 985–992. doi: https://doi.org/10.17516/1999-494x-2017-10-8-985-992
  5. Guy, B. M., Hermes, M., Poon, W. C. K. (2015). Towards a Unified Description of the Rheology of Hard-Particle Suspensions. Physical Review Letters, 115 (8). doi: https://doi.org/10.1103/physrevlett.115.088304
  6. Mosa, E., Saleh, A., Taha, A., El-Molla, A. (2007). A study on the effect of slurry temperature, slurry pH and particle degradation on rheology and pressure drop of coal water slurries. JES. Journal of Engineering Sciences, 35 (5), 1297–1311. doi: https://doi.org/10.21608/jesaun.2007.114558
  7. Vershinina, K., Shevyrev, S., Strizhak, P. (2021). Coal and petroleum-derived components for high-moisture fuel slurries. Energy, 219, 119606. doi: https://doi.org/10.1016/j.energy.2020.119606
  8. Korotkiy, I. A., Neverov, E. N., Murko, V. I., Chernikova, O. P. (2021). The development of ecologically clean technology for coal use in terms of the coal-water slurry usage. Journal of Physics: Conference Series, 1749 (1), 012044. doi: https://doi.org/10.1088/1742-6596/1749/1/012044
  9. Dubrovsky, V. A., Isakov, Yu. V., Potilicyn, M. Yu., Potapov, I. I., Shirokov, V. N. (2010). Research of efficiency of electrohydraulic effects at reception cavitation water-coal of fuel for boiler installations of Krasnoyarsk region. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M. F. Reshetneva, 6 (32), 127–130. Available at: https://cyberleninka.ru/article/n/issledovanie-effektivnosti-elektrogidravlicheskih-effektov-pri-poluchenii-kavitatsionnogo-vodougolnogo-topliva-dlya-kotelnyh
  10. Biletskyi, V. S., Krut, O. A., Svitlyi, Yu. H. (2011). Pryhotuvannia vodovuhilnoho palyva na osnovi buroho vuhillia. Zbahachennia korysnykh kopalyn, 47 (88), 8–16.
  11. Krut, O. A., Bilecky, V. S. (2013). Coal-water slurry fuel: current status and prospects. Visnik Nacional'noi' akademii' nauk Ukrai'ni, 8, 58–65. doi: https://doi.org/10.15407/visn2013.08.058
  12. Biletskyy, V., Sergeyev, P., Krut, O. (2013). Fundamentals of highly loaded coal-water slurries. Mining of Mineral Deposits, 105–114. doi: https://doi.org/10.1201/b16354-19
  13. Kurytnik, I. P., Nussupbekov, B. R., Khassenov, A. K., Nussupbekov, U. B., Karabekova, D. Z., Bolatbekova, M. (2022). Development of a grinding device for producing coal powder-raw materials of coal-water fuel. Archive of Mechanical Engineering, 69 (2), 259–268. doi: https://doi.org/10.24425/ame.2022.140414
  14. Kurytnik, I., Nussupbekov, B. R., Khassenov, A. K., Karabekova, D. Z. (2015). Disintegration of Copper Ores by Electric Pulses / Rozdrobienie Rudy Miedzi Impulsami Elektrycznymi. Archives of Metallurgy and Materials, 60 (4), 2549–2552. doi: https://doi.org/10.1515/amm-2015-0412

Downloads

Published

2022-06-30

How to Cite

Nussupbekov, B., Khassenov, A., Nussupbekov, U., Akhmadiyev, B., Karabekova, D., Kutum, B., & Tanasheva, N. (2022). Development of technology for obtaining coal-water fuel. Eastern-European Journal of Enterprise Technologies, 3(8 (117), 39–46. https://doi.org/10.15587/1729-4061.2022.259734

Issue

Section

Energy-saving technologies and equipment