Risk analysis of Ex-spool 16” mol: an insight of machine learning and experimental result

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.259858

Keywords:

Root-cause-analysis, Wall thinning, Sand Abrasion, Pearson Multicollinear Matrix, Supervised Machine Learning

Abstract

The paper reports the development of a Risk-Based Inspection (RBI)-Machine Learning perspective. The Optical Emission Spectrometry (OES), Tensile and Hardness Test, Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), Sulfate Reducing Bacteria Check, and X-Ray Diffraction (XRD) was used to analyze the root cause of the pipeline’s failure. Corrosion attack shows at the cross-section microstructure based on SEM results. Carbon, Manganese, Phosphorous, and sulfur’s chemical composition is dramatically lower than the standard API 5L Grade X42. Siderite and hematite dominate the composition of the corroded area as a result of CO2 dissolving in water. In contrast, hematite is generated due to the pipe and outdoor atmosphere reaction. Severe local wall thinning of the sand abrasion causes the degradation of the material’s mechanical properties and increases the corrosion rate. This result amplifies by the development of Machine Learning (ML) of Pearson Multicollinear Matrix and Supervised ML (Random Forest, Support Vector Machine, and Linear Regression) to estimate the corrosion degradation of the material. The source of datasets provided by ILI inspection includes the calculated PoF Remaining Useful Life (RuL) as input data, while Probability of Failure (PoF) prediction serves as output data. The Random Forest shows superior predictions of 92.18 %, with the lowest validation loss of 0.0316. The modeling result confirms the experimental outcome. This work demonstrates the implementation strategy to reduce the analysis time, minimize human bias, and serve as a reliable reference tool and guideline to maintain the integrity of the subsea pipelines.

Author Biographies

Taufik Aditiyawarman, Universitas Indonesia

Master of Science, Doctoral Degree Student

Department of Metallurgy and Material Engineering

Johny Wahyuadi Soedarsono, Universitas Indonesia

Doctor of Engineering, Professor

Department of Metallurgy and Material Engineering

Agus Paul Setiawan Kaban, Universitas Indonesia

Master of Engineering, Doctoral Degree Student

Prof Johny Wahyuadi Laboratory

Department of Metallurgical and Materials Engineering

Rini Riastuti, Universitas Indonesia

Doctor of Engineering, Senior Lecturer

Prof Johny Wahyuadi Laboratory

Department of Metallurgical and Materials Engineering

Haryo Rahmadani, Universitas Indonesia

Bachelor of Engineering, Surface Facility Engineer

Prof Johny Wahyuadi Laboratory

Department of Metallurgical and Materials Engineering

Mohammad Pribadi, Universitas Indonesia

Master of Science, Senior Engineer

Prof Johny Wahyuadi Laboratory

Department of Metallurgical and Materials Engineering

Rizal Tresna Ramdhani, Universitas Indonesia

Bachelor of Science, Bachelor of Engineering, Master of Engineering, Senior Engineer

Prof Johny Wahyuadi Laboratory

Department of Metallurgical and Materials Engineering

Sidhi Aribowo, Universitas Indonesia

Master of Science, Senior Engineer

Prof Johny Wahyuadi Laboratory

Department of Metallurgical and Materials Engineering

Suryadi Suryadi, Universitas Indonesia

Master of Engineering, Senior Researcher

Center for Materials Processing and Failure Analysis (CMPFA)

Manufacturing Research Center

Faculty of Engineering

References

  1. Gao, J., Yang, P., Li, X., Zhou, J., Liu, J. (2019). Analytical prediction of failure pressure for pipeline with long corrosion defect. Ocean Engineering, 191, 106497. doi: https://doi.org/10.1016/j.oceaneng.2019.106497
  2. Aalirezaei, A., Kabir, G. (2021). A bibliometric analysis on oil and gas pipeline failure consequence analysis. Innovative Infrastructure Solutions, 6 (4). doi: https://doi.org/10.1007/s41062-021-00591-0
  3. Zakikhani, K., Nasiri, F., Zayed, T. (2020). A Review of Failure Prediction Models for Oil and Gas Pipelines. Journal of Pipeline Systems Engineering and Practice, 11 (1). doi: https://doi.org/10.1061/(asce)ps.1949-1204.0000407
  4. Aljaroudi, A., Khan, F., Akinturk, A., Haddara, M., Thodi, P. (2015). Risk assessment of offshore crude oil pipeline failure. Journal of Loss Prevention in the Process Industries, 37, 101–109. doi: https://doi.org/10.1016/j.jlp.2015.07.004
  5. Rachman, A., Zhang, T., Ratnayake, R. M. C. (2021). Applications of machine learning in pipeline integrity management: A state-of-the-art review. International Journal of Pressure Vessels and Piping, 193, 104471. doi: https://doi.org/10.1016/j.ijpvp.2021.104471
  6. Aditiyawarman, T., Kaban, A. P. S., Soedarsono, J. W. (2022). A Recent Review of Risk-Based Inspection Development to Support Service Excellence in the Oil and Gas Industry: An Artificial Intelligence Perspective. ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg, 9 (1). doi: https://doi.org/10.1115/1.4054558
  7. Alsahli, M. S., Almasri, M. M., Al-Akhras, M., Al-Issa, A. I., Alawairdhi, M. (2021). Evaluation of Machine Learning Algorithms for Intrusion Detection System in WSN. International Journal of Advanced Computer Science and Applications, 12 (5). doi: https://doi.org/10.14569/ijacsa.2021.0120574
  8. Paul Setiawan Kaban, A., Mayangsari, W., Syaiful Anwar, M., Maksum, A., Riastuti, R., Aditiyawarman, T., Wahyuadi Soedarsono, J. (2022). Experimental and modelling waste rice husk ash as a novel green corrosion inhibitor under acidic environment. Materials Today: Proceedings, 62, 4225–4234. doi: https://doi.org/10.1016/j.matpr.2022.04.738
  9. Kaban, A. P. S., Ridhova, A., Priyotomo, G., Elya, B., Maksum, A., Sadeli, Y. et. al. (2021). Development of white tea extract as green corrosion inhibitor in mild steel under 1 M hydrochloric acid solution. Eastern-European Journal of Enterprise Technologies, 2 (6 (110)), 6–20. doi: https://doi.org/10.15587/1729-4061.2021.224435
  10. Kaban, E. E., Maksum, A., Permana, S., Soedarsono, J. W. (2018). Utilization of secang heartwood (caesalpinia sappan l) as a green corrosion inhibitor on carbon steel (API 5L Gr. B) in 3.5% NaCl environment. IOP Conference Series: Earth and Environmental Science, 105, 012062. doi: https://doi.org/10.1088/1755-1315/105/1/012062
  11. Azmi, M. F., Soedarsono, J. W. (2018). Study of corrosion resistrance of pipeline API 5L X42 using green inhibitor bawang dayak (Eleutherine americanna Merr.) in 1M HCl. IOP Conference Series: Earth and Environmental Science, 105, 012061. doi: https://doi.org/10.1088/1755-1315/105/1/012061
  12. Leuvinadrie, L. P., Soedarsono, J. W. M. (2021). Pipe stress simulation and failure analysis of carbon steel flange spool in CO2 gas flow condition. PROCEEDINGS OF THE 13TH AUN/SEED-NET REGIONAL CONFERENCE ON MATERIALS (RCM 2020) AND THE 1ST INTERNATIONAL CONFERENCE ON MATERIALS ENGINEERING AND MANUFACTURING (ICMEM 2020). doi: https://doi.org/10.1063/5.0070886
  13. Bahrami, A., Khouzani, M. K., Harchegani, B. B. (2021). Establishing the root cause of a failure in a firewater pipeline. Engineering Failure Analysis, 127, 105474. doi: https://doi.org/10.1016/j.engfailanal.2021.105474
  14. ong, Y., Du, M.-Y., Ma, F.-Q., He, G.-Q., Xue, Y., Jiao, C.-S. et. al. (2020). Failure analysis and prevention of corrosion occurring during storage on steam generator tube sheet for advanced PWR, Part I: Root causes analysis. Engineering Failure Analysis, 116, 104710. doi: https://doi.org/10.1016/j.engfailanal.2020.104710
  15. Yang, Y., Khan, F., Thodi, P., Abbassi, R. (2017). Corrosion induced failure analysis of subsea pipelines. Reliability Engineering & System Safety, 159, 214–222. doi: https://doi.org/10.1016/j.ress.2016.11.014
  16. Lopez, M. et. al. (2015). Internal corrosion solution for gathering production gas pipelines involving palm oil amide based corrosion inhibitors. Int. J. Electrochem. Sci., 10, 7166–7179. Available at: http://www.electrochemsci.org/papers/vol10/100907166.pdf
  17. Khera, A., Baniah, B. B. (2017). Internal Corrosion Predicted and Found in Refined Piggable Product Pipeline Through ICDA. ASME 2017 India Oil and Gas Pipeline Conference. doi: https://doi.org/10.1115/iogpc2017-2449
  18. Melo, C., Dann, M. R., Hugo, R. J., Janeta, A. (2020). Optimal locations for non-destructive inspections to verify direct assessment of internally corroded pipelines. Upstream Oil and Gas Technology, 5, 100008. doi: https://doi.org/10.1016/j.upstre.2020.100008
  19. Zapevalov, D. N., Vagapov, R. K. (2021). Analysis of regulatory requirements for the assessment of carbon dioxide corrosion at gas production facilities. Issues of Risk Analysis, 18 (2), 60–71. doi: https://doi.org/10.32686/1812-5220-2021-18-2-60-71
  20. Wolodko, J., Alemaskin, K., Adane, K. F., Jaimes, V., Lipsett, M. (2019). Development of a novel testing method for characterizing wet sliding abrasion in slurry transport systems. CORROSION 2019. Available at: https://onepetro.org/NACECORR/proceedings-abstract/CORR19/All-CORR19/NACE-2019-13458/127440
  21. Daniyan, I., Balogun, V., Ererughurie, O. K., Daniyan, L., Oladapo, B. I. (2021). Development of an inline inspection robot for the detection of pipeline defects. Journal of Facilities Management, 20 (2), 193–217. doi: https://doi.org/10.1108/jfm-01-2021-0010
  22. Rachman, A., Ratnayake, R. M. C. (2019). Machine learning approach for risk-based inspection screening assessment. Reliability Engineering & System Safety, 185, 518–532. doi: https://doi.org/10.1016/j.ress.2019.02.008
  23. Xie, M., Sutherland, J., Fang, B., Gu, B., Tian, Z. (2020). Impact Analysis of Inline Inspection Accuracy on Pipeline Integrity Planning. Journal of Pressure Vessel Technology, 142 (6). doi: https://doi.org/10.1115/1.4047270
  24. DNV-RP-F101. Corroded Pipelines.
  25. DNV. Risk Based Inspection of Offshore Topsides Static Mechanical Equipment.
  26. Kuhn, M., Johnson, K. (2013). Applied predictive modeling. Springer, 600. doi: https://doi.org/10.1007/978-1-4614-6849-3
  27. Zhang, C., Liu, C., Zhang, X., Almpanidis, G. (2017). An up-to-date comparison of state-of-the-art classification algorithms. Expert Systems with Applications, 82, 128–150. doi: https://doi.org/10.1016/j.eswa.2017.04.003
  28. Brown, I., Mues, C. (2012). An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Systems with Applications, 39 (3), 3446–3453. doi: https://doi.org/10.1016/j.eswa.2011.09.033
  29. Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., Rigol-Sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104. doi: https://doi.org/10.1016/j.isprsjprs.2011.11.002
  30. Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16 (10), 906–914. doi: https://doi.org/10.1093/bioinformatics/16.10.906
  31. Hao, X., Zhao, X., Chen, H., Huang, B., Ma, J., Wang, C., Yang, Y. (2021). Comparative study on corrosion behaviors of ferrite-pearlite steel with dual-phase steel in the simulated bottom plate environment of cargo oil tanks. Journal of Materials Research and Technology, 12, 399–411. doi: https://doi.org/10.1016/j.jmrt.2021.02.095
  32. Li, J., Du, C., Liu, Z., Li, X. (2022). Extracellular electron transfer routes in microbiologically influenced corrosion of X80 steel by Bacillus licheniformis. Bioelectrochemistry, 145, 108074. doi: https://doi.org/10.1016/j.bioelechem.2022.108074
  33. King, R. A., Miller, J. D. A., Smith, J. S. (1973). Corrosion of Mild Steel by Iron Sulphides. British Corrosion Journal, 8 (3), 137–141. doi: https://doi.org/10.1179/000705973798322251
  34. Li, Y., Feng, S., Liu, H., Tian, X., Xia, Y., Li, M. et. al. (2020). Bacterial distribution in SRB biofilm affects MIC pitting of carbon steel studied using FIB-SEM. Corrosion Science, 167, 108512. doi: https://doi.org/10.1016/j.corsci.2020.108512
  35. Xie, M., Tian, Z. (2018). A review on pipeline integrity management utilizing in-line inspection data. Engineering Failure Analysis, 92, 222–239. doi: https://doi.org/10.1016/j.engfailanal.2018.05.010
  36. Inman, S., Han, J., Gerard, A., Qi, J., Wischhusen, M., Agnew, S. et. al. (2021). Effect of Mn Content on the Passivation and Corrosion of Al0.3Cr0.5Fe2MnxMo0.15Ni1.5Ti0.3 Compositionally Complex Face-Centered Cubic Alloys. Corrosion, 78 (1), 32–48. doi: https://doi.org/10.5006/3906
  37. Raj, P. N., Raha, B., Sekar, K., Joseph, M. (2021). Effect of Manganese on Synergistic Erosion–Corrosion Characteristics of A890 7A Hyper Duplex Stainless Steels. Journal of Materials Engineering and Performance, 31 (1), 11–23. doi: https://doi.org/10.1007/s11665-021-06148-7
  38. Mondal, K., Sathithsuksanoh, N., Lalvani, S. B. (2020). Electrodeposition and characterization of NiCoP. SN Applied Sciences, 2 (12). doi: https://doi.org/10.1007/s42452-020-03921-6
  39. Jiang, Z., Guoyong, L., Yuan, Y., Youdong, J., Xue, G. (2020). Improving sulfur corrosion resistance of transformer windings by grain boundary engineering technology. IEEE Transactions on Dielectrics and Electrical Insulation, 27 (3), 1022–1028. doi: https://doi.org/10.1109/tdei.2020.008735
  40. Cui, L., Kang, W., You, H., Cheng, J., Li, Z. (2020). Experimental Study on Corrosion of J55 Casing Steel and N80 Tubing Steel in High Pressure and High Temperature Solution Containing CO2 and NaCl. Journal of Bio- and Tribo-Corrosion, 7 (1). doi: https://doi.org/10.1007/s40735-020-00449-5
  41. Javidi, M., Bekhrad, S. (2018). Failure analysis of a wet gas pipeline due to localised CO 2 corrosion. Engineering Failure Analysis, 89, 46–56. doi: https://doi.org/10.1016/j.engfailanal.2018.03.006
  42. Liu, H., Wei, J., Dong, J., Chen, Y., Wu, Y., Zhou, Y. et. al. (2021). Influence of cementite spheroidization on relieving the micro-galvanic effect of ferrite-pearlite steel in acidic chloride environment. Journal of Materials Science & Technology, 61, 234–246. doi: https://doi.org/10.1016/j.jmst.2020.05.031
  43. Wang, Z., Zhang, X., Cheng, L., Liu, J., Wu, K. (2021). Role of inclusion and microstructure on corrosion initiation and propagation of weathering steels in marine environment. Journal of Materials Research and Technology, 10, 306–321. doi: https://doi.org/10.1016/j.jmrt.2020.11.096
  44. Hamidah, I., Solehudin, A., Hamdani, A., Hasanah, L., Khairurrijal, K., Kurniawan, T. et. al. (2021). Corrosion of copper alloys in KOH, NaOH, NaCl, and HCl electrolyte solutions and its impact to the mechanical properties. Alexandria Engineering Journal, 60 (2), 2235–2243. doi: https://doi.org/10.1016/j.aej.2020.12.027
  45. Dwivedi, D., Rowles, M. R., Becker, T., Lepkova, K. (2020). The role of ferrite-cementite interface in formation of hierarchical film on carbon steel in CO2-saturated brine. Applied Surface Science, 509, 145107. doi: https://doi.org/10.1016/j.apsusc.2019.145107
  46. Yang, Y., Fan, X., Casillas, G., Peng, Z., Ruan, G., Wang, G. et. al. (2014). Three-Dimensional Nanoporous Fe2O3/Fe3C-Graphene Heterogeneous Thin Films for Lithium-Ion Batteries. ACS Nano, 8 (4), 3939–3946. doi: https://doi.org/10.1021/nn500865d
  47. Sun, J. B., Zhang, G. A., Liu, W., Lu, M. X. (2012). The formation mechanism of corrosion scale and electrochemical characteristic of low alloy steel in carbon dioxide-saturated solution. Corrosion Science, 57, 131–138. doi: https://doi.org/10.1016/j.corsci.2011.12.025
  48. López, D., Schreiner, W., de Sánchez, S., Simison, S. (2003). The influence of carbon steel microstructure on corrosion layers. Applied Surface Science, 207 (1-4), 69–85. doi: https://doi.org/10.1016/s0169-4332(02)01218-7
  49. Syugaev, A. V., Lomaeva, S. F., Reshetnikov, S. M., Shuravin, A. S., Sharafeeva, E. F., Surnin, D. V. (2008). The effect of the structure-phase state of iron-cementite nanocomposites on local activation processes. Protection of Metals, 44 (4), 367–371. doi: https://doi.org/10.1134/s0033173208040097
  50. Masoumi, M., Béreš, M., Herculano, L. F. G., de Carvalho Paes Loureiro, R., de Abreu, H. F. G. (2020). Microstructure and Crystallographic Texture Changes under Torsion Loading of Pearlitic Steel Strips. Journal of Materials Engineering and Performance, 29 (11), 7250–7259. doi: https://doi.org/10.1007/s11665-020-05232-8
  51. De Carvalho Paes Loureiro, R., Beres, M., Masoumi, M., Ferreira Gomes de Abreu, H. (2021). The effect of pearlite morphology and crystallographic texture on environmentally assisted cracking failure. Engineering Failure Analysis, 126, 105450. doi: https://doi.org/10.1016/j.engfailanal.2021.105450
  52. Yuan, Y., Liu, X., Pu, G., Wang, T., Zheng, D. (2021). Temporal and spatial variability of corrosion of high-strength steel wires within a bridge stay cable. Construction and Building Materials, 308, 125108. doi: https://doi.org/10.1016/j.conbuildmat.2021.125108
  53. Antunes, R. A., Costa, I., Faria, D. L. A. de. (2003). Characterization of corrosion products formed on steels in the first months of atmospheric exposure. Materials Research, 6 (3), 403–408. doi: https://doi.org/10.1590/s1516-14392003000300015
  54. Kim, B. H., Kim, H., Hyun, M. S., Park, D. H. (1999). Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. Journal of Microbiology and Biotechnology, 9, 127–131.
  55. Xu, Y.-N., Chen, Y. (2020). Advances in heavy metal removal by sulfate-reducing bacteria. Water Science and Technology, 81 (9), 1797–1827. doi: https://doi.org/10.2166/wst.2020.227
  56. Kraus, M., Feuerriegel, S. (2019). Forecasting remaining useful life: Interpretable deep learning approach via variational Bayesian inferences. Decision Support Systems, 125, 113100. doi: https://doi.org/10.1016/j.dss.2019.113100
  57. Han, Q., Gui, C., Xu, J., Lacidogna, G. (2019). A generalized method to predict the compressive strength of high-performance concrete by improved random forest algorithm. Construction and Building Materials, 226, 734–742. doi: https://doi.org/10.1016/j.conbuildmat.2019.07.315
  58. Rijnhart, J. J. M., Twisk, J. W. R., Eekhout, I., Heymans, M. W. (2019). Comparison of logistic-regression based methods for simple mediation analysis with a dichotomous outcome variable. BMC Medical Research Methodology, 19 (1). doi: https://doi.org/10.1186/s12874-018-0654-z
  59. Ahmed, I. A. I., Cheng, W. (2020). The Performance of Robust Methods in Logistic Regression Model. Open Journal of Statistics, 10 (01), 127–138. doi: https://doi.org/10.4236/ojs.2020.101010
  60. Löffler, M., Zhang, A. Y., Zhou, H. H. (2021). Optimality of spectral clustering in the Gaussian mixture model. The Annals of Statistics, 49 (5). doi: https://doi.org/10.1214/20-aos2044
  61. Hasnain, M., Pasha, M. F., Ghani, I., Imran, M., Alzahrani, M. Y., Budiarto, R. (2020). Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking. IEEE Access, 8, 90847–90861. doi: https://doi.org/10.1109/access.2020.2994222

Downloads

Published

2022-06-30

How to Cite

Aditiyawarman, T., Soedarsono, J. W., Kaban, A. P. S., Riastuti, R., Rahmadani, H., Pribadi, M., Ramdhani, R. T., Aribowo, S., & Suryadi, S. (2022). Risk analysis of Ex-spool 16” mol: an insight of machine learning and experimental result. Eastern-European Journal of Enterprise Technologies, 3(12 (117), 20–33. https://doi.org/10.15587/1729-4061.2022.259858

Issue

Section

Materials Science