Reducing the biogenic corrosion of concrete in a pigsty by using disinfectants

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.263310

Keywords:

biodestruction of construction materials, thermoprogrammed mass spectrometry, micromicents, carbonates, calcium citrate

Abstract

The object of this study is the regularity of changes in the biogenic destructive effect of microorganisms on the concrete structural elements of livestock facilities due to the use of the original liquid phase mixture of disinfectant based on aldehyde and surfactant.

Microorganisms use construction materials as a substrate for growth and nutrition; they produce citric acid, which leads to a change in the composition and morphology of hydrated cement new formations.

The composition of the microflora of the pigsty has been determined, and the minimum concentration of disinfectant based on glutaraldehyde and didecyl dimethyl ammonium chloride was found. By the TPD MS method, a decrease in the intensity of carbon dioxide (CO2) release in concrete samples during the heating of the sample to 900 °C was proved, compared to the control intact corrosion sample. Electron microscopy of concrete samples shows the presence of destructive changes and colonies of micromycetes. It was established that calcite was intensively released in the control sample of concrete, which retained its integrity and was not subjected to corrosion when heated to a temperature of 600 °C. Electron microscopy confirms the preservation of the homogeneous structure of concrete.

The use of a disinfectant based on glutaraldehyde and didecyl dimethyl ammonium chloride at a concentration of 1 % destroys colonies of micromycetes, 2 % – the shell of microorganisms, and 3 % – biofilm. Treatment of concrete with a disinfectant at a concentration of 3 % destroys microorganisms Aspergillus fumigatus and Penicillium oxalicum, inhibits the process of biological corrosion of concrete, and strengthens the structure of concrete.

The results of the experiment can be applied to inhibit the corrosion of concrete and extend the life of building structures made of concrete through the use of a disinfectant based on aldehyde and didecyl dimethyl ammonium chloride at a concentration of 3 %.

Author Biographies

Oksana Shkromada, Sumy National Agrarian University

Doctor of Veterinary Sciences, Professor

Department of Obstetrics and Surgery

Tatiana Fotina, Sumy National Agrarian University

Doctor of Veterinary Sciences, Professor

Department of Veterinary Examination, Microbiology, Zoohygiene and Safety and Quality of Livestock Products

Yevheniia Dudnyk, Sumy National Agrarian University

Postgraduate Student

Department of Veterinary Examination, Microbiology, Zoohygiene and Safety and Quality of Livestock Products

Roman Petrov, Sumy National Agrarian University

Doctor of Veterinary Sciences, Professor

Department of Virusology, Patanatomy and Bird Diseases Named after professor I. I. Panicar

Viktoriya Levytska, Podillia State University; Institute of Parasitology Biology Centre CAS

Doctor of Veterinary Sciences

Department of Infectious and Invasive Diseases

Vadym Chivanov, Institute of Applied Physics, National Academy of Sciences of Ukraine

Doctor of Agrarian Sciences, Associate Professor

Depatrment of Radiation Biophysics

Nadiya Bogatko, Bila Tserkva National Agrarian University

Doctor of Veterinary Sciences, Associate Professor

Department of Veterinary Sanitary Examination and Laboratory Diagnostics

Alina Pikhtirova, Sumy State University

PhD, Associate Professor

Department of Public Health

Olexandr Bordun, Institute of Agriculture of the Northeast of the National Academy of Agrarian Sciences of Ukraine

PhD, Senior Researcher

Laboratory of Animal Husbandry and Fodder Production

References

  1. Jiang, G., Zhou, M., Chiu, T. H., Sun, X., Keller, J., Bond, P. L. (2016). Wastewater-Enhanced Microbial Corrosion of Concrete Sewers. Environmental Science & Technology, 50 (15), 8084–8092. doi: https://doi.org/10.1021/acs.est.6b02093
  2. Wells, T., Melchers, R. E. (2014). An observation-based model for corrosion of concrete sewers under aggressive conditions. Cement and Concrete Research, 61-62, 1–10. doi: https://doi.org/10.1016/j.cemconres.2014.03.013
  3. Glibert, P. M. (2020). From hogs to HABs: impacts of industrial farming in the US on nitrogen and phosphorus and greenhouse gas pollution. Biogeochemistry, 150 (2), 139–180. doi: https://doi.org/10.1007/s10533-020-00691-6
  4. Wei, S., Jiang, Z., Liu, H., Zhou, D., Sanchez-Silva, M. (2014). Microbiologically induced deterioration of concrete: a review. Brazilian journal of microbiology, 44 (4), 1001–1007. doi: https://doi.org/10.1590/s1517-83822014005000006
  5. Shkromada, O., Fotina, T., Petrov, R., Nagorna, L., Bordun, O., Barun, M. et. al. (2021). Development of a method of protection of concrete floors of animal buildings from corrosion at the expense of using dry disinfectants. Eastern-European Journal of Enterprise Technologies, 4 (6 (112)), 33–40. doi: https://doi.org/10.15587/1729-4061.2021.236977
  6. Wang, Z., Zhu, Z., Sun, X., Wang, X. (2017). Deterioration of fracture toughness of concrete under acid rain environment. Engineering Failure Analysis, 77, 76–84. doi: https://doi.org/10.1016/j.engfailanal.2017.02.013
  7. Engelbrecht, K., Ambrose, D., Sifuentes, L., Gerba, C., Weart, I., Koenig, D. (2013). Decreased activity of commercially available disinfectants containing quaternary ammonium compounds when exposed to cotton towels. American Journal of Infection Control, 41 (10), 908–911. doi: https://doi.org/10.1016/j.ajic.2013.01.017
  8. Vereshchagin, A. N., Frolov, N. A., Egorova, K. S., Seitkalieva, M. M., Ananikov, V. P. (2021). Quaternary Ammonium Compounds (QACs) and Ionic Liquids (ILs) as Biocides: From Simple Antiseptics to Tunable Antimicrobials. International Journal of Molecular Sciences, 22 (13), 6793. doi: https://doi.org/10.3390/ijms22136793
  9. Gerba, C. P. (2015). Quaternary ammonium biocides: efficacy in application. Applied and environmental microbiology, 81 (2), 464–469. doi: https://doi.org/10.1128/aem.02633-14
  10. Vikram, A., Bomberger, J. M., Bibby, K. J. (2015). Efflux as a Glutaraldehyde Resistance Mechanism in Pseudomonas fluorescens and Pseudomonas aeruginosa Biofilms. Antimicrobial Agents and Chemotherapy, 59 (6), 3433–3440. doi: https://doi.org/10.1128/aac.05152-14
  11. Hilal, A. A. (2016). Microstructure of Concrete. High Performance Concrete Technology and Applications. doi: https://doi.org/10.5772/64574
  12. Roghanian, N., Banthia, N. (2019). Development of a sustainable coating and repair material to prevent bio-corrosion in concrete sewer and waste-water pipes. Cement and Concrete Composites, 100, 99–107. doi: https://doi.org/10.1016/j.cemconcomp.2019.03.026
  13. Justs, J., Bajare, D., Korjakins, A., Mezinskis, G., Locs, J., Bumanis, G. (2013). Microstructural Investigations of Ultra-High Performance Concrete Obtained by Pressure Application within the First 24 Hours of Hardening. Construction Science, 14. doi: https://doi.org/10.2478/cons-2013-0008
  14. Merachtsaki, D., Fytianos, G., Papastergiadis, E., Samaras, P., Yiannoulakis, H., Zouboulis, A. (2020). Properties and Performance of Novel Mg(OH)2-Based Coatings for Corrosion Mitigation in Concrete Sewer Pipes. Materials, 13 (22), 5291. doi: https://doi.org/10.3390/ma13225291
  15. Lim, C.-H., Chung, Y.-H. (2014). Effects of Didecyldimethylammonium Chloride on Sprague-Dawley Rats after Two Weeks of Inhalation Exposure. Toxicological Research, 30 (3), 205–210. doi: https://doi.org/10.5487/tr.2014.30.3.205
  16. Frolov, N., Detusheva, E., Fursova, N., Ostashevskaya, I., Vereshchagin, A. (2022). Microbiological Evaluation of Novel Bis-Quaternary Ammonium Compounds: Clinical Strains, Biofilms, and Resistance Study. Pharmaceuticals, 15 (5), 514. doi: https://doi.org/10.3390/ph15050514
  17. Fox, L. J., Kelly, P. P., Humphreys, G. J., Waigh, T. A., Lu, J. R., McBain, A. J. (2021). Assessing the risk of resistance to cationic biocides incorporating realism-based and biophysical approaches. Journal of Industrial Microbiology and Biotechnology, 49 (1). doi: https://doi.org/10.1093/jimb/kuab074
  18. Inácio, Â. S., Domingues, N. S., Nunes, A., Martins, P. T., Moreno, M. J., Estronca, L. M. et. al. (2015). Quaternary ammonium surfactant structure determines selective toxicity towards bacteria: mechanisms of action and clinical implications in antibacterial prophylaxis. Journal of Antimicrobial Chemotherapy, 71 (3), 641–654. doi: https://doi.org/10.1093/jac/dkv405
  19. Maertens, H., De Reu, K., Meyer, E., Van Coillie, E., Dewulf, J. (2019). Limited association between disinfectant use and either antibiotic or disinfectant susceptibility of Escherichia coli in both poultry and pig husbandry. BMC Veterinary Research, 15 (1). doi: https://doi.org/10.1186/s12917-019-2044-0
  20. Suphaphimol, N., Suwannarach, N., Purahong, W., Jaikang, C., Pengpat, K., Semakul, N. et. al. (2022). Identification of Microorganisms Dwelling on the 19th Century Lanna Mural Paintings from Northern Thailand Using Culture-Dependent and -Independent Approaches. Biology, 11 (2), 228. doi: https://doi.org/10.3390/biology11020228
  21. Garkavenko, T. O., Gorbatyuk, O. I., Kozytska, T. G., Anriashchuk, V. O., Garkavenko, V. M., Dybkova, S. M., Azirkina, I. M. (2021). Methodical recommendations for determining the sensitivity of microorganisms to antibacterial drugs. Kншм: DNDILVSE, 101.
  22. Murphy, C. J., Ardy Nugroho, F. A., Härelind, H., Hellberg, L., Langhammer, C. (2020). Plasmonic Temperature-Programmed Desorption. Nano Letters, 21 (1), 353–359. doi: https://doi.org/10.1021/acs.nanolett.0c03733
  23. Kulik, T. V. (2011). Use of TPD–MS and Linear Free Energy Relationships for Assessing the Reactivity of Aliphatic Carboxylic Acids on a Silica Surface. The Journal of Physical Chemistry C, 116 (1), 570–580. doi: https://doi.org/10.1021/jp204266c
  24. Bozhokin, M. S., Bozhkova, S. A., Rubel, A. A., Sopova, J. V., Nashchekina, Y. A., Bildyug, N. B., Khotin, M. G. (2021). Specificities of Scanning Electron Microscopy and Histological Methods in Assessing Cell-Engineered Construct Effectiveness for the Recovery of Hyaline Cartilage. Methods and protocols, 4 (4), 77. doi: https://doi.org/10.3390/mps4040077
  25. Shkromada, O., Paliy, A., Nechyporenko, O., Naumenko, O., Nechyporenko, V., Burlaka, O. et. al. (2019). Improvement of functional performance of concrete in livestock buildings through the use of complex admixtures. Eastern-European Journal of Enterprise Technologies, 5 (6 (101)), 14–23. doi: https://doi.org/10.15587/1729-4061.2019.179177
  26. Buffet-Bataillon, S., Tattevin, P., Bonnaure-Mallet, M., Jolivet-Gougeon, A. (2012). Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds – a critical review. International Journal of Antimicrobial Agents, 39 (5), 381–389. doi: https://doi.org/10.1016/j.ijantimicag.2012.01.011
  27. Shkromada, O., Ivchenko, V., Chivanov, V., Tsyhanenko, L., Tsyhanenko, H., Moskalenko, V. et. al. (2021). Defining patterns in the influence exerted by the interelated biochemical corrosion on concrete building structures under the conditions of a chemical enterprise. Eastern-European Journal of Enterprise Technologies, 2 (6 (110)), 52–60. doi: https://doi.org/10.15587/1729-4061.2021.226587
  28. Bordunova, O. G., Samokhina, Ye. A., Dolbanosova, R. V., Patreva, L. S., Cherniy, N. V., Chekh, O. O. et. al. (2021). Physico-Geometric Approach to the Processes of Thermal Decomposition of the Guinea Fowl (Numida meleagris) Eggshell’s Bionanocomposites. 2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP). doi: https://doi.org/10.1109/nap51885.2021.9568520
  29. Yakovleva, G., Sagadeev, E., Stroganov, V., Kozlova, O., Okunev, R., Ilinskaya, O. (2018). Metabolic Activity of Micromycetes Affecting Urban Concrete Constructions. The Scientific World Journal, 2018, 8360287. doi: https://doi.org/10.1155/2018/8360287
  30. Chesnokova, T., Loginova, S. A., Kiselev, V. A. (2018). Analysis of the impact of biological corrosion of different duration on concrete. Sovremennye naukoemkie tekhnologii. Regional'noe prilozhenie, 2 (54), 98–101. Available at: https://cyberleninka.ru/article/n/analiz-vozdeystviya-biologicheskoy-korrozii-razlichnoy-dlitelnosti-na-beton/viewer
  31. Modenez, I. A., Sastre, D. E., Moraes, F. C., Marques Netto, C. (2018). Influence of Glutaraldehyde Cross-Linking Modes on the Recyclability of Immobilized Lipase B from Candida antarctica for Transesterification of Soy Bean Oil. Molecules, 23 (9), 2230. doi: https://doi.org/10.3390/molecules23092230
  32. Wales, A. D., Davies, R. H. (2021). Disinfection to control African swine fever virus: a UK perspective. Journal of Medical Microbiology, 70 (9), 001410. doi: https://doi.org/10.1099/jmm.0.001410
  33. Ogarkov, B. N., Bukovskaya, N. E., Ogarkova, G. R., Samusenok, L. V. (2013). The specificity of biocides impact of on the microbial causative agents of porous building materials biodamage. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Biologiya. Ekologiya, 6 (2), 144–152. Available at: https://cyberleninka.ru/article/n/o-spetsifichnosti-deystviya-biotsidov-na-mikroorganizmy-vyzyvayuschie-biopovrezhdeniya-poristyh-stroitelnyh-materialov/viewer
  34. Analysis of quaternary ammonium compounds (QACs) in fruits and vegetables using QuEChERS and LC-MS/MS (2016). EU Reference Laboratory for Pesticides Requiring Single Residue Methods. Available at: https://www.eurl-pesticides.eu/userfiles/file/EurlSRM/EurlSRM_meth_QAC_ShortMethod.pdf

Downloads

Published

2022-08-31

How to Cite

Shkromada, O., Fotina, T., Dudnyk, Y., Petrov, R., Levytska, V., Chivanov, V., Bogatko, N., Pikhtirova, A., & Bordun, O. (2022). Reducing the biogenic corrosion of concrete in a pigsty by using disinfectants. Eastern-European Journal of Enterprise Technologies, 4(6(118), 57–66. https://doi.org/10.15587/1729-4061.2022.263310

Issue

Section

Technology organic and inorganic substances