DOI: https://doi.org/10.15587/1729-4061.2014.30872

Formation of metal being electrodeposited solely in spherulitic form

Олег Борисович Гирин, Евгений Валериевич Колесник

Abstract


The aim of the work was the experimental verification of validity of the phenomenon of phase formation through a stage of liquid state in metals being electrodeposited. The idea of the work is based on a known fact that at super-quick solidification of highly undercooled liquid metallic phase the spherulites appear. For the proof of existence of intermediate liquid phase of metal being electrodeposited it was planned to obtain the deposits in spherulitic form. The conditions for the formation of metal being electrodeposited in spherulitic form are discussed and realized. Practical realization of the idea mentioned above was accomplished by combined nickel and chromium alloying of iron being electrodeposited at high current density. As a result of the model experiment the samples of electrodeposited alloyed iron, consisting solely of spherulites, were obtained. The formation of metal being electrodeposited solely in shperulitic form, typical for the metal solidified from liquid state with very high rate in conditions of significant undercooling, proves validity of the phenomenon of phase formation of metals being electrodeposited through a stage of liquid state.


Keywords


metal being electrodeposited; spherulitic form; liquid state; surface morphology; electrodeposited iron

References


Girin, O. B. (2014). Crystallographic Texture Formation in Metals being Electrodeposited at the External Force Influence. American Journal of Materials Science, 4 (3), 150–158. doi: 10.5923/j.materials.20140403.06

Girin, O. B. (2014). Structure Features of Metals Obtained by Electrochemical Deposition and by Solidification fromLiquidStatein Saturated Hydrogen Environment. Chemical and Materials Engineering, 2 (5), 119–126. doi: 10.13189/cme.2014.020503

Powel, G. L. F., Hogan, L. M. (1968). The Undercooling of Copper and Copper-Oxygen Alloys. Transactions of the Metallurgical Society of AIME, 242 (10), 2133–2138.

Caesar, C. (1999). Undercooling and CrystalGrowth Velocity During Rapid Solidification. Advanced Engineering Materials, 1 (1), 75–79. doi: 10.1002/(sici)1527-2648(199909)1:1<75::aid-adem75>3.3.co;2-f

Glezer, A. M., Permyakova,I.E. (2013). Melt-Quenched Nanocrystals.Boca Raton,USA: CRC Press, 369.

Yesin, V. O., Sazonova, V. A., Zablotskaia, I. A. (1989). Spherulite Form of Crystallization in Metals. Izvestiia Akademii nauk SSSR. Metally, 2, 73–77.

Granasy, L., Pusztai, T., Tegze, G., Warren, J. A., Douglas, J. F. (2005). Growth and Form of Spherulites. Physical Review E, 72 (1). doi: 10.1103/PhysRevE.72.011605

Andreassen, J.-P., Flaten, E. M., Beck, R., Lewis, A. E. (2010). Investigations of Spherulitic Growth in Industrial Crystallization. Chemical Engineering Research and Design, 88 (9), 1163–1168. doi: 10.1016/j.cherd.2010.01.024

Mamontov, Ye. A., Kurbatova, L. A., Volenko, A. P. (1983). Formation of Spherulites During Electrocrystallization of Copper on Indifferent Substrates. Electrokhimiia, 19 (11), 1546–1549.

Mamontov, Ye. A., Kurbatova, L. A., Volenko, A. P. (1985). Spherulites as Form of Growth of Electrolytic Deposits. Electrokhimiia, 21 (9), 1211–1214.

Girin, O. B., Ovcharenko, V.I.(2014). Formation of Spherulites and Pentagonal Quasicrystals in Metals being Electrodeposited. Eastern-European Journal of Enterprise Technologies, 2/11 (68), 30–34.Avialble at: http://journals.uran.ua/eejet/article/view/21860/21041

Krasnova,N. I., Petrov T. G. (1995). Genesis of mineral individuals and agregates,St. Petersburg,Russia: Nevsky Courier, 228.

Pusztai, T., Bortel, G., Granasy L. (2005). Phase Field Theory of Polycrystalline Solidification in Three Dimensions. Europhysics Letters, 71 (1), 131–137. doi: 10.1209/epl/i2005-10081-7

Granasy, L., Ratkai, L., Szallas, A., Korbuly, B., Toth, G. I., Kornyei, L., Pusztai, T. (2014). Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystalsto Spherulites – A Review. Metallurgical and Materials Transactions A, 45 (4), 1694–1719. doi: 10.1007/s11661-013-1988-0

Girin, O. B. (2000). Phenomenon of Precipitation of Metal Being Electrodeposited, Occurring via Formation of an Undercooled Liquid Metal Phase and its Subsequent Solidification. Part 1. Experimental Detection and Theoretical Grounding. Materials Development and Processing.Weinheim,Germany: WILEY-VCH, 8, 183–188. doi: 10.1002/3527607277.ch30

Girin, O. B. (2000). Phenomenon of Precipitation of Metal Being Electrodeposited, Occurring via Formation of an Undercooled Liquid Metal Phase and its Subsequent Solidification. Part 2. Experimental Verification. Materials Development and Processing. Weinheim, Germany : WILEY-VCH, 8, 189–194. doi: 10.1002/3527607277.ch31


GOST Style Citations


1. Girin, O. B. Crystallographic Texture Formation in Metals being Electrodeposited at the External Force Influence [Text] / O. B. Girin // American Journal of Materials Science. – 2014. – Vol. 4, Issue 3. – P. 150–158. DOI: 10.5923/j.materials.20140403.06

2. Girin, O. B. Structure Features of Metals Obtained by Electrochemical Deposition and by Solidification from Liquid State in Saturated Hydrogen Environment [Text] / O. B. Girin // Chemical and Materials Engineering. – 2014. – Vol. 2, Issue 5. – P. 119–126. doi: 10.13189/cme.2014.020503

3. Powel, G. L. F. The Undercooling of Copper and Copper-Oxygen Alloys [Text] / G. L. F. Powel, L. M. Hogan // Transactions of the Metallurgical Society of AIME. – 1968. – Vol. 242, Issue 10. – P. 2133–2138.

4. Caesar, C. Undercooling and CrystalGrowth Velocity During Rapid Solidification [Text] / C. Caesar // Advanced Engineering Materials. – 1999. – Vol. 1, Issue 1. – P. 75–79. doi: 10.1002/(sici)1527-2648(199909)1:1<75::aid-adem75>3.3.co;2-f 

5. Glezer, A. M. Melt-Quenched Nanocrystals [Text] / A. M. Glezer,I.E. Permyakova. –Boca Raton: CRC Press, 2013. – 369 p.

6. Есин, В. О. Сферолитные формы кристаллизации в металлах [Текст] / В. О. Есин, В. А. Сазонова, И. А. Заблоцкая // Известия АН СССР. Металлы. – 1989. – № 2. – С. 73–77.

7. Granasy, L. Growth and Form of Spherulites [Text] / L. Granasy, T. Pusztai, G. Tegze, J. A. Warren, J. F. Douglas // Physical Review E. – 2005. – Vol. 72, Issue 1. doi: 10.1103/PhysRevE.72.011605

8. Andreassen, J.-P. Investigations of Spherulitic Growth in Industrial Crystallization [Text] / J.-P. Andreassen, E. M. Flaten, R. Beck, A. E. Lewis // Chemical Engineering Research and Design. – 2010. – Vol. 88, Issue 9. – P. 1163–1168. doi: 10.1016/j.cherd.2010.01.024 

9. Мамонтов, Е. А. Формирование сферолитов при электрокристаллизации меди на индифферентных подложках [Текст] / Е. А. Мамонтов, Л. А. Курбатова, А. П. Воленко // Электрохимия. – 1983. – Т. 19, № 11. – С. 1546–1549.

10. Мамонтов, Е. А. Сферолиты как форма роста электролитических осадков [Текст] / Е. А. Мамонтов, Л. А. Курбатова, А. П. Воленко // Электрохимия. – 1985. – Т. 21, № 9. – С. 1211–1214.

11. Гирин, О. Б. Возникновение сферолитов и пентагональных квазикристаллов в электроосаждаемых металлах [Текст] / О. Б. Гирин, В. И. Овчаренко // Восточно-Европейский журнал передовых технологий. – 2014. – Т. 2, № 11 (68). – С. 30–34. – Режим доступа: http://journals.uran.ua/eejet/article/view/21860/21041

12. Краснова, Н. И. Генезис минеральных индивидов и агрегатов [Текст] / Н. И. Краснова, Т. Г. Петров. – СПб : Невский курьер, 1995. – 228 с.

13. Pusztai, T. Phase Field Theory of Polycrystalline Solidification in Three Dimensions [Text] / T. Pusztai, G. Bortel, L. Granasy // Europhysics Letters. – 2005. – Vol. 71, Issue 1. – P. 131–137. doi: 10.1209/epl/i2005-10081-7

14. Granasy, L. Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites – A Review [Text] / L. Granasy, L. Ratkai, A. Szallas, B. Korbuly, G. I. Toth, L. Kornyei, T. Pusztai // Metallurgical and Materials Transactions A. – 2014. – Vol. 45, Issue 4. – P. 1694–1719. doi: 10.1007/s11661-013-1988-0 

15. Girin, O. B. Phenomenon of Precipitation of Metal Being Electrodeposited, Occurring via Formation of an Undercooled Liquid Metal Phase and its Subsequent Solidification. Part 1. Experimental Detection and Theoretical Grounding [Text] / O. B. Girin // Materials Development and Processing. Weinheim : WILEY-VCH. – 2000. – Vol. 8. – P. 183–188. doi: 10.1002/3527607277.ch30

16. Girin, O. B. Phenomenon of Precipitation of Metal Being Electrodeposited, Occurring via Formation of an Undercooled Liquid Metal Phase and its Subsequent Solidification. Part 2. Experimental Verification [Text] / O. B. Girin // Materials Development and Processing. Weinheim : WILEY-VCH. – 2000. – Vol. 8. – P. 189–194. doi: 10.1002/3527607277.ch31







Copyright (c) 2014 Олег Борисович Гирин, Евгений Валериевич Колесник

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061