Influence of various factors on the thermal conductivity of nanofluids

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.31386

Keywords:

nanofluids, nanoparticles, thermal conductivity, experiment, models, calculation

Abstract

Influence of the main factors on the properties of nanolubricants, including the methods of their preparation, the size and shape of initial nanoparticles, their concentration, temperature, type and properties of the base fluids, the measuring procedure are considered. In this study, the results of experimental research of thermal conductivity of the model system isopropyl alcohol - nanoparticles Al2O3 are presented. All measurements were conducted over a temperature range from 270 to 370 K at different mixture compositions using two independent methods: the steady-state hot-wire method and the transient hot-wire method. The size and concentration of nanoparticles in the lubricant were determined by dynamic light scattering (laser correlation spectroscopy). The analysis of the obtained data show that thermal conductivity become considerably increased due to nanoparticles even at small nanoparticle concentration (at the Al2O3 volume concentration of 2.5 %, the thermal conductivity increases by 15-20 %). Based on the obtained data, the modified Maxwell model for thermal conductivity was developed.

Author Biographies

Николай Александрович Шимчук, Odessa National Academy of Food Technologies Str. Kanatnaya 112, Odessa, Ukraine, 65039

PhD student, junior researcher

Department of Thermal Physics and Applied Ecology 

Владимир Зиновиевич Геллер, Odessa National Academy of Food Technologies Str. Kanatnaya 112, Odessa, Ukraine, 65039

Doctor of Technical Sciences, Professor

Department of Thermal Physics and Applied Ecology

References

  1. Kleinstreuer, С., Feng, Y. (2011). Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Research Letters, 6 (1), 229. doi: 10.1186/1556-276x-6-229
  2. Sridhara, V., Satapathy, L. N. (2011). Al2O3-based nanofluids: a review. Nanoscale Research Letters, 6 (1), 456. doi: 10.1186/1556-276x-6-456
  3. Li, C. H., Peterson, G. P. (2006). Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity nanoparticle suspensions (nanofluids). Journal of Applied Physics, 99 (8), 084314. doi: 10.1063/1.2191571
  4. Timofeeva, E. V., Gavrilov, A. N., McCloskey, J. M., Tolmachev, Y. V. (2007). Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Physical Review E, 76 (6), 061203. doi: 10.1103/physreve.76.061203
  5. Xie, H., Wang, J., Xi, T., Liu, Y., Ai, F. (2002). Thermal conductivity enhancement of suspensions containing nanosized alumna particles. Journal of Applied Physics, 91 (7), 4568–4572. doi: 10.1063/1.1454184
  6. Eastman, J. A., Choi, S. U. S, Li, S., Yu, W., Thomson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78 (6), 718–720. doi: 10.1063/1.1341218
  7. Masuda, H., Ebata, A., Teramae, K., Hishinuma, N. (1993). Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al2O3, SiO2, and TiO2 ultra-fine particles). Netsu Bussei, 7 (4), 227–233. doi: 10.2963/jjtp.7.227
  8. Das, S. K., Putra, N., Thiesen, P., Roetzel, W. (2003). Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer, 125 (4), 567–574. doi: 10.1115/1.1571080
  9. Murshed, S. M. S., Leong, K. C., Yang, C. (2008). Invesitions of thermal conductivity and viscosity of nanofluids. International Journal of Thermal Sciences, 47 (5), 560–568. doi: 10.1016/j.ijthermalsci.2007.05.004
  10. Zhang, X., Gu, H., Fujii, M. (2006). Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Journal of Applied Physics, 100 (4), 1–5. doi: 10.1063/1.2259789
  11. Xie, H. Q., Gu, H., Fujii, M., Zhang, X. (2006). Short hot wire technique for measuring thermal conductivity and thermal diffusivity of various materials. Measurement Science and Technology, 17 (1), 208–214. doi: 10.1088/0957-0233/17/1/032
  12. Mintsa, H. A., Roy, G., Nguyen, C. T., Doucet, D. (2009). New temperature dependent thermal conductivity data for water-based nanofluids. International Journal of Thermal Sciences, 48 (2), 363–371. doi: 10.1016/j.ijthermalsci.2008.03.009
  13. Ali, F. M., Yunus, W. M. M., Moksin, M. M., Talib, Z. A. (2010). The effect of volume fraction concentration on the thermal conductivity and thermal diffusivity of nanofluids: numerical and experimental. Review of Scientific Instruments, 81 (7), 074901. doi: 10.1063/1.3458011
  14. Wang, X., Xu, X., Choi, S. U. S. (1999). Thermal conductivity of nanoparticle, fluid mixture // Journal of Thermophysics and Heat Transfer, 13, 4, 474–480. doi: 10.2514/2.6486
  15. Lee, S., Choi, S. U. S, Li, S., Eastman, J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121 (2), 280–89. doi: 10.1115/1.2825978
  16. Oh, D. W., Jain, A., Eaton, J. K., Goodson, K. E., Lee, J. S. (2008). Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using 3ω method. International Journal of Heat and Fluid Flow, 29 (5), 1456–1461. doi: 10.1016/j.ijheatfluidflow.2008.04.007
  17. Grushko, V. O., Geller, V. Z. (2012). Teploprovodnost nekotoryih mineralnyih i sinteticheskih kompressornyih holodilnyih masel. Holodilnaya tehnika i tehnologiya, 3 (137), 4–9.
  18. Maxwell, J. C. (1881). A Treatise on Electricity and Magnetism, second ed., Clarendon Press, Oxford, UK.

Published

2014-12-15

How to Cite

Шимчук, Н. А., & Геллер, В. З. (2014). Influence of various factors on the thermal conductivity of nanofluids. Eastern-European Journal of Enterprise Technologies, 6(11(72), 35–40. https://doi.org/10.15587/1729-4061.2014.31386

Issue

Section

Materials Science