DOI: https://doi.org/10.15587/1729-4061.2014.31386

Influence of various factors on the thermal conductivity of nanofluids

Николай Александрович Шимчук, Владимир Зиновиевич Геллер

Abstract


Influence of the main factors on the properties of nanolubricants, including the methods of their preparation, the size and shape of initial nanoparticles, their concentration, temperature, type and properties of the base fluids, the measuring procedure are considered. In this study, the results of experimental research of thermal conductivity of the model system isopropyl alcohol - nanoparticles Al2O3 are presented. All measurements were conducted over a temperature range from 270 to 370 K at different mixture compositions using two independent methods: the steady-state hot-wire method and the transient hot-wire method. The size and concentration of nanoparticles in the lubricant were determined by dynamic light scattering (laser correlation spectroscopy). The analysis of the obtained data show that thermal conductivity become considerably increased due to nanoparticles even at small nanoparticle concentration (at the Al2O3 volume concentration of 2.5 %, the thermal conductivity increases by 15-20 %). Based on the obtained data, the modified Maxwell model for thermal conductivity was developed.


Keywords


nanofluids; nanoparticles; thermal conductivity; experiment; models; calculation

References


Kleinstreuer, С., Feng, Y. (2011). Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Research Letters, 6 (1), 229. doi: 10.1186/1556-276x-6-229

Sridhara, V., Satapathy, L. N. (2011). Al2O3-based nanofluids: a review. Nanoscale Research Letters, 6 (1), 456. doi: 10.1186/1556-276x-6-456

Li, C. H., Peterson, G. P. (2006). Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity nanoparticle suspensions (nanofluids). Journal of Applied Physics, 99 (8), 084314. doi: 10.1063/1.2191571

Timofeeva, E. V., Gavrilov, A. N., McCloskey, J. M., Tolmachev, Y. V. (2007). Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Physical Review E, 76 (6), 061203. doi: 10.1103/physreve.76.061203

Xie, H., Wang, J., Xi, T., Liu, Y., Ai, F. (2002). Thermal conductivity enhancement of suspensions containing nanosized alumna particles. Journal of Applied Physics, 91 (7), 4568–4572. doi: 10.1063/1.1454184

Eastman, J. A., Choi, S. U. S, Li, S., Yu, W., Thomson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78 (6), 718–720. doi: 10.1063/1.1341218

Masuda, H., Ebata, A., Teramae, K., Hishinuma, N. (1993). Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al2O3, SiO2, and TiO2 ultra-fine particles). Netsu Bussei, 7 (4), 227–233. doi: 10.2963/jjtp.7.227

Das, S. K., Putra, N., Thiesen, P., Roetzel, W. (2003). Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer, 125 (4), 567–574. doi: 10.1115/1.1571080

Murshed, S. M. S., Leong, K. C., Yang, C. (2008). Invesitions of thermal conductivity and viscosity of nanofluids. International Journal of Thermal Sciences, 47 (5), 560–568. doi: 10.1016/j.ijthermalsci.2007.05.004

Zhang, X., Gu, H., Fujii, M. (2006). Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Journal of Applied Physics, 100 (4), 1–5. doi: 10.1063/1.2259789

Xie, H. Q., Gu, H., Fujii, M., Zhang, X. (2006). Short hot wire technique for measuring thermal conductivity and thermal diffusivity of various materials. Measurement Science and Technology, 17 (1), 208–214. doi: 10.1088/0957-0233/17/1/032

Mintsa, H. A., Roy, G., Nguyen, C. T., Doucet, D. (2009). New temperature dependent thermal conductivity data for water-based nanofluids. International Journal of Thermal Sciences, 48 (2), 363–371. doi: 10.1016/j.ijthermalsci.2008.03.009

Ali, F. M., Yunus, W. M. M., Moksin, M. M., Talib, Z. A. (2010). The effect of volume fraction concentration on the thermal conductivity and thermal diffusivity of nanofluids: numerical and experimental. Review of Scientific Instruments, 81 (7), 074901. doi: 10.1063/1.3458011

Wang, X., Xu, X., Choi, S. U. S. (1999). Thermal conductivity of nanoparticle, fluid mixture // Journal of Thermophysics and Heat Transfer, 13, 4, 474–480. doi: 10.2514/2.6486

Lee, S., Choi, S. U. S, Li, S., Eastman, J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121 (2), 280–89. doi: 10.1115/1.2825978

Oh, D. W., Jain, A., Eaton, J. K., Goodson, K. E., Lee, J. S. (2008). Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using 3ω method. International Journal of Heat and Fluid Flow, 29 (5), 1456–1461. doi: 10.1016/j.ijheatfluidflow.2008.04.007

Grushko, V. O., Geller, V. Z. (2012). Teploprovodnost nekotoryih mineralnyih i sinteticheskih kompressornyih holodilnyih masel. Holodilnaya tehnika i tehnologiya, 3 (137), 4–9.

Maxwell, J. C. (1881). A Treatise on Electricity and Magnetism, second ed., Clarendon Press, Oxford, UK.


GOST Style Citations


Kleinstreuer, С. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review [Text] / C. Kleinstreuer, Y. Feng // Nanoscale Research Letters. – 2011. – Vol. 6, Issue 1. – P. 229. doi: 10.1186/1556-276x-6-229 

Sridhara, V. Al2O3-based nanofluids: a review [Text] / V. Sridhara, L. N. Satapathy // Nanoscale Research Letters. – 2011. – Vol. 6, Issue 1. – P. 456. doi: 10.1186/1556-276x-6-456 

Li, C. H. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity nanoparticle suspensions (nanofluids) [Text] / C. H. Li, G. P. Peterson // Journal of Applied Physics. – 2006. – Vol. 99, Issue 8. – P. 084314. doi: 10.1063/1.2191571 

Timofeeva, E. V. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory [Text] / E. V. Timofeeva, A. N. Gavrilov, J. M. McCloskey, Y. V. Tolmachev // Physical Review E. – 2007. – Vol. 76, Issue 6. – P. 061203. doi: 10.1103/physreve.76.061203 

Xie, H. Thermal conductivity enhancement of suspensions containing nanosized alumna particles [Text] / H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai // Journal of Applied Physics. – 2002. – Vol. 91, Issue 7. – P. 4568–4572. doi: 10.1063/1.1454184 

Eastman, J. A. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles [Text] / J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, L. J. Thomson // Applied Physics Letters. – 2001. – Vol. 78, Issue 6. – P. 718–720. doi: 10.1063/1.1341218 

Masuda, H. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al2O3, SiO2, and TiO2 ultra-fine particles) [Text] / H. Masuda, A. Ebata, K. Teramae, N. Hishinuma // Netsu Bussei. – 1993. – Vol. 7, Issue 4. – P. 227–233. doi: 10.2963/jjtp.7.227 

Das, S. K. Temperature dependence of thermal conductivity enhancement for nanofluids [Text] / S. K. Das, N. Putra, P. Thiesen, W. Roetzel // Journal of Heat Transfer. – 2003. – Vol. 125, Issue 4. – P. 567–574. doi: 10.1115/1.1571080 

Murshed, S. M. S. Invesitions of thermal conductivity and viscosity of nanofluids [Text] / S. M. S. Murshed, K. C. Leong, C. Yang // International Journal of Thermal Sciences. 2008. – Vol. 47, Issue 5. – P. 560–568. doi: 10.1016/j.ijthermalsci.2007.05.004 

Zhang, X. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles [Text] / X. Zhang, H. Gu, M. Fujii // Journal of Applied Physics. – 2006. – Vol. 100, Issue 4. – P. 1–5. doi: 10.1063/1.2259789 

Xie, H. Q. Short hot wire technique for measuring thermal conductivity and thermal diffusivity of various materials [Text] / H. Q. Xie, H. Gu, M. Fujii, X. Zhang // Measurement Science and Technology. – 2006. – Vol. 17, Issue 1. – P. 208–214. doi: 10.1088/0957-0233/17/1/032 

Mintsa, H. A. New temperature dependent thermal conductivity data for water-based nanofluids [Text] / H. A. Mintsa, G. Roy, C. T. Nguyen, D. Doucet // International Journal of Thermal Sciences. – 2009. – Vol. 48, Issue 2. – P. 363–371. doi: 10.1016/j.ijthermalsci.2008.03.009 

Ali, F. M. The effect of volume fraction concentration on the thermal conductivity and thermal diffusivity of nanofluids: numerical and experimental [Text] / F. M. Ali, W. M. M. Yunus, M. M. Moksin, Z. A. Talib // Review of Scientific Instruments. – 2010. – Vol. 81, Issue 7. – P. 074901. doi: 10.1063/1.3458011 

Wang, X. Thermal conductivity of nanoparticle, fluid mixture [Text] / X. Wang, X. Xu, S. U. S. Choi // Journal of Thermophysics and Heat Transfer. – 1999. – Vol. 13, Issue 4. – P. 474–480. doi: 10.2514/2.6486 

Lee, S. Measuring thermal conductivity of fluids containing oxide nanoparticles [Text] / S. Lee, S. U. S. Choi, S. Li, J. A. Eastman // Journal of Heat Transfer. – 1999. – Vol. 121, Issue 2. – P. 280–289. doi: 10.1115/1.2825978 

Oh, D. W. Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using 3ω method [Text] / D. W. Oh, A. Jain, J. K. Eaton, K. E. Goodson, J. S. Lee // International Journal of Heat and Fluid Flow. – 2008. – Vol. 29, Issue 5. – P. – 1456–1461. doi: 10.1016/j.ijheatfluidflow.2008.04.007 

Грушко, В. О. Теплопроводность некоторых минеральных и синтетических компрессорных холодильных масел [Текст] / В. О. Грушко, В. З. Геллер // Холодильная техника и технология. – 2012. – № 3 (137). – С. 4–9.

Maxwell, J. C. A Treatise on Electricity and Magnetism. Second edition [Text] / J. C. Maxwell. – Clarendon Press, Oxford, UK, 1881.







Copyright (c) 2014 Владимир Зиновиевич Геллер, Николай Александрович Шимчук

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061