Investigation of emergency automation failures influence on the power system accident risk

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.32043

Keywords:

risk, probability, failure, system fault, system automation, probabilistic-statistical method, technical condition, dynamic stability

Abstract

To improve the power system reliability, it is necessary to organize efficient management. Effective management requires an integrated approach which takes into account the probabilistic nature of failures, stochasticity of modes, possible scenarios of the accident and its consequences. Technical risk most fully covers all the factors. The paper presents the fuzzy-statistical method for assessing the accident probability and risk in the power system. The proposed method takes into account the operation of system emergency automation devices and their operable or inoperable condition. Modeling of the 14-node test circuit of the power system was performed using the developed method. Probability of dynamic stability loss on the time interval was estimated for this circuit. The results have confirmed the adequacy of the developed fuzzy-statistical method and shown the need to consider the operation and condition of system emergency automation to obtain reliable results.

Author Biography

Володимир Валерійович Літвінов, Zaporizhia State Engineering Academy Lenin avenue 226, Zaporizhia, Ukraine, 69006

Philosophy Doctor in Electrical Engineering, Associate Professor

Hydro Power Department

References

  1. Ciapessoni, E., Cirio, D., Gagleoti, E. (2008). A probabilistic approach for operational risk assessment of power systems. CIGRE, С4–114.
  2. Balzer, G., Bakic, K., Haubrich, H.-J. (2006). Selection of an optimal maintenance and replacement strategy of HV equipment by a risk assessment process. CIGRE, B3–103.
  3. Handschin, E., Jurgens, I., Neumann, C. (2008). Long term optimization for risk-oriented asset management. 16th Power Systems Computation Conference, Glasgow.
  4. Kosterev, M. V., Bardyk, E. I., Litvinov, V. V. (2013). Risk Estimation of Induction Motor Fault in Power System. WSEAS Transactions on Power Systems, 4 (8), 217–226.
  5. Genis, Y. (2008). Reliability and risk assessment of systems of protection and blocking with fast restoration. R&RATA, 1, 41–57.
  6. Voropai, N. I. (2011). Snizhenie riskov kaskadnyh avarii v elektroenergeticheskih sistemah. Novosibirsk: SO RAN, 303.
  7. Sitnikov, V. F., Skopintsev, V. A. (2007). Veroiatnostno-statisticheskii podhod k otsenke resursov elektrosetevogo oborudovania v protsesse ekspluatatsii. Elektrichestvo, 11, 9–15.
  8. Qui, Q. (2003). Risk assessment of power catastrophic failures and hidden failure monitoring and control system. PhD thesis in electrical engineering. Blacksburg, Virginia, 212.
  9. De La Ree, J., Liu, Y., Mili, L., Phadke, A., Da Silva, L. (2005). Catastrophic failures in power systems: causes, analysis and countermeasures. Proceedings of the IEEE, 93, 5, 956–964. doi: 10.1109/jproc.2005.847246
  10. Panasetskii, D. A. (2014). Sovershenstvovanie struktury i algoritmov protivoavariinogo upravlenia EES dlia predotvrashchenia laviny napriazhenii i kaskadnyh otkliuchenii linii. Avtoreferat dissertatsii na soiskanie uchenoi stepeni kandidata tehnicheskih nauk, Irkutsk, 27.
  11. Litvinov, V. V. (2012). Otsinka ryzyku potuchennia stiikosti dvygunovogo navantazhennia pry vidmovah elektroobladnannia v pidsystemi EES. Avtoreferat disertatsii na zdobuttia naukovogo stupenia kandydata tehnichnyh nauk, Kyiv, 20.
  12. Kosterev, N. V., Litvinov, V. V. (2012). Otsenivanie riska vozniknovenia avariinoi situatsii v podsisteme EES s vetrianoi ekektrostantsiei. Vidnovliuvana energetika XXI stolittia. Materialy XIII mizhnarodnoi naukovo-praktychnoi konferencii. Krym, 357–362.
  13. Shalin, A. I. (2002). Nadezhnost i diagnostika releinoi zashchity energosistem. Novosibirsk, NGTU, 384.
  14. Abbarin, A., Fotuhi Firuzabad, M., Özdemir, A. (2011). An extended component-based reliability model for protective systems to determine routine test schedule. Turkish Journal of Electrical Engineering & Computer Science, 19 (2), 303–315.
  15. Ridwan, M. I., Yen, K. L., Musa, A., Yunus, B. (2010). Application of Life Data Analysis for the Reliability Assessment of Numerical Overcurrent Relays. World Academy of Science, Engineering and Technology, 48, 969–975.
  16. Litvinov, V. V., Manukian, K. A. (2014). Fuzzy-Statistical Modeling of Hydrogenerator for Its Reliability Appreciation. The IJES, 3 (1), 85–95.
  17. Kosterev, M. V., Bardyk, E. I. (2010). Pytannia pobudovy nechitkyh modelei otsinky tehnichnogo stanu obiektiv elektrychnyh system. Kiev: NTUU ‘KPI’, 131.
  18. Kosterev, M. V., Bardyk, E. I., Vozhakov, R. V. (2011). Nechitke modeliuvannia LEP dlia znyzhennia nadiinosti elektropostachannia. Visnyk VPI, 6, 159–163.
  19. Okin, A. A. (1995). Protivoavariinaia avtomatika energosystem. Moskow: MEI, 212.
  20. Vanin, B. V., Lvov, Y. N., Neklepaev, B. N. (2003). Vopros povyshenia nadezhnosti raboty blochnyh transformatorov. Elektricheskie stantsii, 7, 38–42.
  21. Neklepaev, B. N., Vostrosablin, A. A. (1999). Veroiatnostnyie harakteristiki korotkih zamykanii v energosistemah. Elektrichestvo, 8, 15–23.
  22. Abdurahmanov, A. M., Misrihanov, M. S., Shuntov, A. V. (2007). Elektricheskie stantsii, 7, 59–63.

Published

2014-12-15

How to Cite

Літвінов, В. В. (2014). Investigation of emergency automation failures influence on the power system accident risk. Eastern-European Journal of Enterprise Technologies, 6(8(72), 47–56. https://doi.org/10.15587/1729-4061.2014.32043

Issue

Section

Energy-saving technologies and equipment