DOI: https://doi.org/10.15587/1729-4061.2015.39205

The impact of capillary structure properties on heat transfer from boiling in limited space

Александра Александровна Баскова, Владимир Юрьевич Кравец, Ольга Сергеевна Алексеик, Наталия Леонидовна Лебедь

Abstract


Modern cooling systems for radio and electronic equipment widely use heat pipes. The main element of heat pipes is capillary and porous structure (CPS), on which a heat transfer agent boils and condensates. Previous studies showed that intensity of heat transfer depends on geometric parameters of the CPS. Our research is devoted to analyzing experimental data on the intensity of heat transfer from boiling in limited space on the CPS with various fiber lengths. We have determined the impact of space limit on boiling intensity on the CPS. The analysis of the findings has proved that within limited space, when the height of the volume limiter is 5 to 16 mm above the working surface and the density of the heat flow rises to 200 kW/m2, the intensity of heat transfer increases. A comparison of boiling intensity on CPSs in large space with boiling intensity in limited space has shown that at the fiber length of 5 mm heat transfer coefficients are similar. Further fiber lengthening leads to decrease in heat transfer intensity.


Keywords


heat transfer intensification; fiber length; boiling; capillary and porous structure (CPS); limited space

References


Report Ukrainian participant of the project «Development and creation of heat pipes on a basis metalfibrous capillary structures with improved thermophysic characteristics for temperature control systems of the perspective space vehicles» - Institute for Problems of Materials. IN Frantsevich National Academy of Sciences of Ukraine for the 2007 - 2008 year. Sat. scientific. Works (2007–2008). National Academy of Sciences of Ukraine. Kiev, 55.

Genske, P., Stephan, K. (2006). Numerical simulation of heat transfer during growth of single vapor bubbles in nucleate boiling. International journal of thermal sciences, 45, 299–309. doi: 10.1016/j.ijthermalsci.2004.07.008

Nakoryakov, V. E., Kuznetsov, V. V. (2010). Teplomassobmen pri fazovikh perekhodakh s himicheskih prevrasheniakh v mikrocanalnikh sistemakh, 167.

Grigoriev, V. A., Krokhin, Y., Kulikov A. S. (1972). Teploobmen pri kipenii v verticalnukh shelevukh kanalakh, Proc. MEI. Heat and mass transfer processes and devices, 141, 58–68.

Amethyst, E. V., Klimenko, V. V., Pavlov, Y. M. (1995). Kipenie kriogennukh gidkostei, Energoatomizdat, 400.

Ishibashi, T., Nishikawa, H. (1969). Saturated boiling heat transfer in narrow spases, Journal Heat and Mass Transfer, 12 (8), 863–893.

Vishnev, I. P., Vinokur, J. G., Shaposhnikov, V. A., Gorokhov, V. V. (1972). Heat and Mass, 2, 263–270.

Wojcik, T. M. (2009). Experimental investigation of boiling heat transfer hysteresis on sintered, metal – Fibrous, porous structures. Experimental Thermal and Fluid Science, 33 (3), 397–404. doi: 10.1016/j.expthermflusci.2008.10.011

Alam, M. S., Prasad, L., Gupta, S. C., Agarwal, V. K. (2008). Enhanced boiling of saturated water on copper coated heating tubes. Chemical Engineering and Processing: Process Intensification, 47 (1), 159–167. doi: 10.1016/j.cep.2007.07.021

Kim, J. H., Rainey, K. N., You, S. M., Pak, J. V. (2002). Mechanism of nucleate boiling heat transfer enhancement from micro-porous surfaces in saturated FC – 72. Journal of Heat Transfer, 124 (3), 500–506. doi: 10.1115/1.1469548

Butkovskiy, A. A. (1985). Teploobmen pri kipenii vodu i acetona na poverkhnostiakh s metallovoloknistumi kappiliarno-poristumi pokrutiami. Kiev, 23.

Alekseik, O. S. (2013). Vlianie kharakteristik poristoi structuri na intensivnost kipenia v teplovoi trube. Energy and energy efficiency, 6/5, 29–31.

Ovsyannikov, A. V. (2004). Teploobmen pri kipenii na razvitukh poverkhnostiakh v promushlennukh teploobmennukh apparatakh. Moscow, 43.

Nishikava, K., Fujita, Y., Ohta, H., Hidaka, S. (1982). Effects of system pressure and surface roughness on nucleate boiling heat transfer. Memoirs of the Faculty of Engineering, Kyushu University, 95–111.

You, S. M., Simon, T. W., Bar-Cohen, A. (1990). Experiments on nucleate biling transfer with a highly-wetting dielectric fluid: effects of pressure, subcooling and dissolved gas content. Cryogenic and Immersion Cooling of Optics and Electronic Equipment, 131, 45–52.

Alekseik, O. S., Kravets, V. Y. (2012). Influence of free space high on boiling heat-transfer intensity on porous structure. Eastern-European Journal of Enterprise Technologies, 4/8 (58), 24–27. Available at: http://journals.uran.ua/eejet/article/view/5725/5132


GOST Style Citations


1. Отчет украинского участинка проекта «Development and creation of heat pipes on a basis metalfibrous capillary structures with improved thermophysic characteristics for temperature control systems of the perspective space vehicles» - Института проблем материаловедения им. И. Н. Францевича Национальной академии наук Украины за 2007 - 2008 год [Текст] : сб. науч. Трудов. / НАН Украины – Киев? 2007–2008. – 55 с.

2. Genske, P. Numerical simulation of heat transfer during growth of single vapor bubbles in nucleate boiling [Текст] / P. Genske, K. Stephan // International journal of thermal sciences. – 2006. – Vol. 45, Issue 3. – P. 299–309. doi: 10.1016/j.ijthermalsci.2004.07.008 

3. Накоряков, В. Е Тепломассообмен при фазовых переходах и химических превращениях в микроканальных системах [Текст] / В. Е. Накоряков, В. В. Кузнецов. – Новосибирск, 2010. – 167 с.

4. Григорьев, В. А. Теплообмен при кипении в вертикальных щелевых каналах [Текст] / В. А. Григорьев, Ю. И. Крохин, А. С. Куликов // Тр. МЭИ. Тепло- и массообменные процессы и аппараты. – 1972. – Вып. 141. – С. 58–68.

5. Аметистов, Е. В. Кипение криогенных жидкостей [Текст] / Е. В. Аметистов, В. В. Клименко, Ю. М. Павлов. – М.: Энергоатомиздат, 1995. – 400 с.

6. Ishibashi, T. Saturated boiling heat transfer in narrow spases [Text] / T. Ishibashi, H. Nishikawa // Journal Heat and Mass Transfer. – 1969. – Vol. 12, Issue 8. – P. 863–893.

7. Вишнев, И. П. Тепло- и массоперенос [Текст] / И. П. Вишнев, Я. Г. Винокур, В. А. Шапошников, В. В. Горохов // ИТМО АН БССР. – 1972. – Т. 2, Ч. 1. – С. 263–270.

8. Wojcik, T. M. Experimental investigation of boiling heat transfer hysteresis on sintered, metal – Fibrous, porous structures [Text] / T. M. Wojcik // Experimental Thermal and Fluid Science. – 2009. – Vol. 33, Issue 3. – P. 397–404. doi: 10.1016/j.expthermflusci.2008.10.011 

9. Alam, M. S. Enhanced boiling of saturated water on copper coated heating tubes [Text] / M. S. Alam, L. Prasad, S. C. Gupta, V. K. Agarwal // Chemical Engineering and Processing: Process Intensification. – 2008. – Vol. 47, Issue 1. – P. 159–167. doi: 10.1016/j.cep.2007.07.021 

10. Kim, J. H. Mechanism of nucleate boiling heat transfer enhancement from micro-porous surfaces in saturated FC – 72 [Text] / J. H. Kim, K. N. Rainey, S. M. You, J. V. Pak // Journal of Heat Transfer. – 2002. – Vol. 124, Issue 3. – P. 500–506. doi: 10.1115/1.1469548 

11. Бутковский, А. А. Теплообмен при кипении воды и ацетона на поверхностях с металловолкнистыми капиллярно-пористыми покрытиями [Текст] : автореф. дис. канд. тех. наук : 01.01.14 / А. А. Бутковский. – Ин-т технической теплофизики АН УССР. К., 1985. – 23 с.

12. Алексеик, О. С. Влияние характеристик пористой структуры на интенсивность кипения в тепловой трубе [Текст] / О. С. Алексеик // Энергетика и энергосбережение. – 2013. – № 6/5 – С. 29–31.

13. Овсянник, А. В. Теплообмен при кипении на развитых поверхностях в промышленных теплообменных аппаратах [Текст] : автореф. дис. канд. тех. наук : 05.14.04 / А. В. Овсянник. – УО «Гомельский государственный технический университет имени П. О. Сухого». М., 2004. – 43 с.

14. Nishikava, K. Effects of system pressure and surface roughness on nucleate boiling heat transfer [Text] / K. Nishikava, Y. Fujita, H. Ohta, S. Hidaka. – Memoirs of the Faculty of Engineering, Kyushu University, 1982. – P. 95–111.

15. You, S. M. Experiments on nucleate biling transfer with a highly-wetting dielectric fluid: effects of pressure, subcooling and dissolved gas content [Text] / S. M. You, T. W. Simon, A. Bar-Cohen // Cryogenic and Immersion Cooling of Optics and Electronic Equipment. – 1990. – Vol. 131. – P. 45–52.

16. Алексеик, О. С. Влияние стесненных условий на интенсивность теплоотдачи при кипении на пористой поверхности [Текст] / О. С. Алексеик, В. Ю. Кравец // Восточно-Европейский журнал передовых технологий. – 2012. – Т. 4, № 8 (58) – С. 24–27. – Режим доступа: http://journals.uran.ua/eejet/article/view/5725/5132







Copyright (c) 2015 Александра Александровна Баскова, Владимир Юрьевич Кравец, Ольга Сергеевна Алексеик, Наталия Леонидовна Лебедь

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061