Selection of economical schemes heat recovery cogeneration power plant

Authors

  • Юрий Константинович Тодорцев Odessa National Polytechnic University Prospect Shevchenko, 1, Odessa, Ukraine, 65044, Ukraine
  • Ольга Сергеевна Тарахтий Odessa National Polytechnic University Av. Shevchenko, 1, Odessa, Ukraine, 65044, Ukraine
  • Анатолий Николаевич Бундюк Odessa National Polytechnic University Av. Shevchenko, 1, Odessa, Ukraine, 65044, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.40401

Keywords:

cogeneration plant, regeneration, gas turbine power plant, heat scheme, efficiency indicators

Abstract

The paper considers several schemes of flue gas heat recovery in a cogeneration plant based on the gas turbine engine. We have considered two types of schemes: those that include only an HRSG for utilizing flue gas heat and schemes supplied with a gas air heater for post-compressor air heating. A coefficient of fuel heat utilization was accepted as a major indicator of the power plant efficiency. We have calculated efficiency indicators of a cogeneration plant to select a recovery scheme of maximum efficiency. The indicators prove the importance of utilizing flue gas heat for heating air after the compressor. The post-compressor increase of air temperature allows reduction of fuel consumption.

Therefore, flue gas heat after a gas turbine should be used primarily for heating air after the compressor, and only later it can be utilized in a recovery boiler. The calculations result in a conclusion that the most economical recovery scheme suggests using successively a gas air heater and an HRSG. Such a heat scheme has the lowest fuel flow (qт=0.229 kg/s) and maximum efficiency (ηccpp=0.9122).

Author Biographies

Юрий Константинович Тодорцев, Odessa National Polytechnic University Prospect Shevchenko, 1, Odessa, Ukraine, 65044

Doctor of Technical Sciences, Professor

Department of automation of heat power processes

Ольга Сергеевна Тарахтий, Odessa National Polytechnic University Av. Shevchenko, 1, Odessa, Ukraine, 65044

Postgraduate student

The Department of thermal power automation processes

Анатолий Николаевич Бундюк, Odessa National Polytechnic University Av. Shevchenko, 1, Odessa, Ukraine, 65044

Candidate of technical Sciences, associate Professor

The Department of Accounting, analysis and audit

References

  1. Osnovy kogenertsii i maloi energetyki. Available at: http://www.cogeneration.ru/base-benefits/base.html?&students=1–
  2. Basok, B. I., Bazeev, E. T., Didenko, V. M., Kolomeiko, D. A. (2006). Analis koheneratsionnykh ustanovok. Part 1. Klassifikatsiya i osnovnye pokazateli. Prom. Teplotekhnika, 28 (3), 83–89.
  3. Dolinski, A. A., Basok, B. I., Bazeev, E. T., Pirogenko, I. A. (2007). Komunalna teploenergetika Ukraini: stan, problem, shlyakhi modernizatsii, 828.
  4. Hitelman, L. D., Ratnikov, B. E. (2006). Energeticheskii biznes, 600.
  5. Hanzha, A. N., Marchenko, N. A. (2012). Usovershenstvovanie statsionarnoi hazoturbinnioi ustanovki vyborom ratsionalnnykh parametrov regeneratora-vozdukhopodogrevatelya. Sbornik nauchnykh trudov “Vestnik NTU KHPI“”, 7, 124–128.
  6. Fialko, N. M., Serenkovskii, Yu. V., Stepanova, A. I. (2008). Effektivnost sistem utilizatsii teploty otkhodyashchikh gazov energeticheskikh ustanovok razlichnogo tipa. Prom. teplotekhnika, 30 (3), 68–76.
  7. Tsenaev, S. V. (2002). Gasoturbinnye i parogazovye ustanovki dlya teplovykh elektrostantsii, 584.
  8. Dmitrichenkova, Ye. I., Monakh, S. I., Orlov, S. M. (2009). Analitychni doslidzhennya strukturnykh skhem kogeneratsiinykh ustanovok dlya sistem teplopostachannya. Suchasne promyslove ta tsivilne budivnytstvo, 5 (3), 107–112.
  9. Herushin, A. N., Nishchik, A. P. (2009). Energoekonomicheskaya effektivnost utilizatsii teploty. Prom. teplotekhnika, 31 (2), 82–86.
  10. Kotler, V. R. (2006). Mini cogeneneration stations: Foreign experience. Thermal Engineering, 53 (8), 659–662. doi: 10.1134/s0040601506080143
  11. Klimenko, V. N., Mazur, A. I., Sabashuk, P. P. (2008). Kogeneratsionnye sistemy s teplovymi dvigatelyami, 560.
  12. Kostiuk, A. H., Frolov, V. V., Bulkin, A. Ye., Trukhnii, A. D. (2008). Parovye I gazovye turbiny dlya elektrostantsii, 556.
  13. Balasanyan, H. A., Mazurenko, A. S. (2008). Analiz effektivnosti integrirovannykh sistem energosberezheniya na baize ustanovok kogeneratsii maloi moshchnosti i vozobnovlyaemykh istochnikov energii, Teplova energetika, 1, 7–10.
  14. Basok, B. I., Kolomeiko, D. A. (2006). Analiz kogeneratsionnykh ustanovok. Chast 2. Analiz energeticheskoi effektivnosti. Prom. teplotekhnica, 28 (4), 79–83.
  15. Herushin, A. N., Nishchik, A. P. (1997). Razrabotka i vnedrenie effektivnykh teploutilizatorov na osnove teploperedaiushchikh elementov isparitelno-kondensatsionnogo tipa, Prom. teplotekhnika, 19 (6), 69–73.
  16. Bundiuk, A. N., Ulitskaya, E. O. (2013). Razrabotka algoritma dlya rascheta statiki kogeneratsionnoi energeticheskoi. Kholodilnaya tekhnica i tekhnologiya, 3 (143), 34–40.

Published

2015-04-10

How to Cite

Тодорцев, Ю. К., Тарахтий, О. С., & Бундюк, А. Н. (2015). Selection of economical schemes heat recovery cogeneration power plant. Eastern-European Journal of Enterprise Technologies, 2(8(74), 17–22. https://doi.org/10.15587/1729-4061.2015.40401

Issue

Section

Energy-saving technologies and equipment