A research on technological and physicochemical laws of manufacturing vibration-absorbing products based on epoxy-urethane polymer compositions

Authors

  • Анна Васильевна Скрипинец Kharkiv National University of Civil Engineering and Architecture Sumskaya 40, Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-2340-023X
  • Юлия Михайловна Данченко Kharkiv National University of Civil Engineering and Architecture Sumskaya 40, Kharkov, Ukraine, 61002, Ukraine
  • Алексей Васильевич Кабусь Kharkiv National University of Civil Engineering and Architecture Sumskaya 40, Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-2340-023X

DOI:

https://doi.org/10.15587/1729-4061.2015.43324

Keywords:

casting compositions, exothermic reactions, composition viability, curing rate

Abstract

The paper presents a research on the technology of manufacturing epoxy-urethane compositions for casting products and components in the systems of vibration protection. At the initial stage of epoxy-urethane composition curing, specific heat release, temperature of the mixture and, consequently, viability and curing rate proved to be largely dependent on the nature of the curing agent and the reactive oligomer as well as on the use of a filler. The experiment has shown that technological characteristics of epoxy-urethane compositions, i.e. viability, specific heat release, temperature of the reaction mixture and curing rate, correlate among themselves and can be used as criteria for regulating and managing the casting process. It is proved that at an increased composition weight that is required for manufacturing big-size products, the curing process takes place at higher temperatures, while the variation of temperature characteristics of the mixture during curing remains unchanged.

Author Biographies

Анна Васильевна Скрипинец, Kharkiv National University of Civil Engineering and Architecture Sumskaya 40, Kharkov, Ukraine, 61002

Candidate of engineering sciences, assistant

Department of General Chemistry

Юлия Михайловна Данченко, Kharkiv National University of Civil Engineering and Architecture Sumskaya 40, Kharkov, Ukraine, 61002

Candidate of engineering sciences, associate professor, managing a department

Department of General Chemistry

Алексей Васильевич Кабусь, Kharkiv National University of Civil Engineering and Architecture Sumskaya 40, Kharkov, Ukraine, 61002

Candidate of engineering sciences, assistant

Department of Physico-chemical Mechanics and Technology of Building Materials and Products

References

  1. Gladkikh, S. N., Kuznetsova, L. I. (2004). Novyye zalivochnyye kompaundy na osnove modifitsirovannykh epoksidnykh smol. Aviakosmicheskaya tekhnika i tekhnologiya, 3, 14–20.
  2. Gladkikh, S. N., Kuznetsova, L. I., Osipova, T. S. (2003). Novyye konstruktsionnyye vibro, udaroprochnyye klei. Aviakosmicheskaya tekhnika i tekhnologiya, 4, 7–14.
  3. Stockhausen, J., McClenac, C. (2012). Selecting the Right Potting Compound for Your Application.USA. Available at: http://www.elantas.it/fileadmin/_migrated/content_uploads/ELANTAS-Potting-Compound-Brochure_01.pdf
  4. Danchenko, Yu. M., Skripinets, A. V., Popov, Yu. V. (2013). The dispersion filled vibration-absorbing epoxyurethane polymer compositions for vibration isolation systems. European Applied Sciences, 2, 23–26.
  5. System szyny w otulinie EDILON Corkelast ERS (2015). Kraków. Available at: http://www.tines.pl/pl/kolej/menu-kolej-systemy/ers-system-szyny-w-otulinie.html#
  6. Kochergin, Yu. S., Zolotareva, V. V., Grigorenko, T. I. (2013). Vliyaniye komponentnogo sostava i rezhimov otverzhdeniya na iznosostoykost' epoksidnykh kompozitov. Voprosy khimii i khimicheskoy tekhnologii, 3, 69–73.
  7. Li, Kh. (1973). Spravochnoye rukovodstvo po epoksidnym smolam: spravochnoye izdaniye. Moscow: Energiya, 415.
  8. Poloz, A. Yu., Lipitskiy, S. G., Kushchenko, S. N. (2013). Osobennosti ekzotermicheskoy reaktsii otverzhdeniya iznosostoykikh epoksidnykh kompozitsiy poliaminami. Voprosy khimii i khimicheskoy tekhnologii, 6, 61–65.
  9. Popov, Yu. V., Skripinets, A. V., Bykov, R. A. (2013). Issledovaniye adgezionno-prochnostnykh svoystv vibropogloshchayushchikh epoksiuretanovykh polimerov. Communal Gospodarstwa mіst, 107, 139–143.
  10. Usherov-Marshak, A. V., Sopov, V. P. (2010). Universal'nyy kalorimetricheskiy kompleks dlya analiza teplovydeleniya vyazhushchikh i betonov. Metrologіya that vimіryuvalna tehnіka, 286–289.
  11. Popov, Yu. V., Kondratenko, A. V., Sayenko, N. V. (2011). Issledovaniye tekhnologicheskikh svoystv oligomer-oligomernykh kompozitsiy, soderzhashchikh epoksidnyye i tsiklokarbonatnyye gruppy. Naukoviy vísnik budívnitstva, 66, 228–231.
  12. Kandola, B. K., Biswas, B., Price, D., Horrocks, A. R. (2010). Studies on the effect of different levels of toughener and flame retardants on thermal stability of epoxy resin. Polymer Degradation and Stability, 95( 2), 144–152. doi: 10.1016/j.polymdegradstab.2009.11.040
  13. Hapuarachchi, T. D., Peijs, T. (2010). Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Composites Part A: Applied Science and Manufacturing, 41 (8), 954–963. doi: 10.1016/j.compositesa.2010.03.004

Published

2015-06-24

How to Cite

Скрипинец, А. В., Данченко, Ю. М., & Кабусь, А. В. (2015). A research on technological and physicochemical laws of manufacturing vibration-absorbing products based on epoxy-urethane polymer compositions. Eastern-European Journal of Enterprise Technologies, 3(11(75), 4–8. https://doi.org/10.15587/1729-4061.2015.43324

Issue

Section

Materials Science